项目名称: 基于增量模糊关联分类方法的飞行品质监控研究

项目编号: No.61301245

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 霍纬纲

作者单位: 中国民航大学

项目金额: 24万元

中文摘要: 飞行品质监控是指收集飞机运行过程中的QAR(Quick Access Recorder)数据,依据事先设定的监控项目和标准从中发现各种超限事件,采取针对性的改进措施,避免事故发生。但是,现行工作方式存在如下不足:需要领域工程师依据经验识别过滤超限事件,工作量大;无法检测到已有监控项目和标准集合之外的飞行异常;没有对QAR数据背后深层次问题进行系统分析。为此,本项目根据QAR数据集维数高、数据量大的特点,在前期研究的基础上提出构建增量模糊关联分类器的新方法,为监测、诊断超限事件提供一种新的方式;并利用其检测已有监控项目和标准集合之外的飞行异常,为补充完善监控项目和标准提供依据。本项目的研究将有助于提高民航飞行品质监控工作的自动性和准确性、有助于实现更加有效的主动航空安全管理。其创新性之处是首次提出构建增量模糊关联分类器的新方法,并将其应用于民航飞行品质监控工作。

中文关键词: 增量模糊关联分类;飞行品质监控;异常检测;H-mine算法;聚类算法

英文摘要: Flight Operations Quality Assurance (FOQA) collects QAR(Quick Access Recorder) data generated by an aircraft moving through the air from one point to another, discovers various exceedance events from QAR data by pre-setted monitoring item and criteria. It also can adopt relevant measures in response to exceedance event, and avoid the occurrence of accident. However, Current practice of FOQA exists some shortcomings: It need domain expert to recognise exceedance event according to experience,which is a heavy workload; it can not dectect an abnormality which is not defined in monitoring item and criteria; and it does not analysis QAR(Quick Access Recorder) data deeply.In order to address these challenges, We propose a novel approach for building Incremental Fuzzy Associative Classifier(IFAC) on the basis of the characteristic of QAR data's magnanimity and high-dimension. The proposal will offer a new mode for monitoring and diagnosing exceedance event through the using of IFAC. We also will apply IFAC to detect fly abnormalities which are not defined in monitoring item and criteria. These abnormalities will provide the basis for supplementing monitoring item and criteria. Our work will enhence automaticity and accuracy of FOQA, realize more effective and proactive aviation safety management. The novelty of this p

英文关键词: incremental fuzzy associative classification;flight operation quality assurance;anomaly detection;H-mine algorithm;cluster algorithm

成为VIP会员查看完整内容
0

相关内容

监控视频的异常检测与建模综述
专知会员服务
49+阅读 · 2021年12月27日
基于深度神经网络的图像缺损修复方法综述
专知会员服务
26+阅读 · 2021年12月18日
【NeurIPS2021】基于关联与识别的少样本目标检测
专知会员服务
22+阅读 · 2021年11月29日
专知会员服务
17+阅读 · 2021年9月8日
专知会员服务
29+阅读 · 2021年6月4日
基于深度学习的行人检测方法综述
专知会员服务
69+阅读 · 2021年4月14日
专知会员服务
27+阅读 · 2021年4月2日
【AAAI2021】基于组间语义挖掘的弱监督语义分割
专知会员服务
16+阅读 · 2021年1月19日
基于深度学习的图像目标检测算法综述
专知
2+阅读 · 2022年4月16日
如何解决工业缺陷检测小样本问题?
极市平台
6+阅读 · 2022年2月24日
基于深度学习的小目标检测方法综述
专知
2+阅读 · 2021年4月29日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
目标检测技术二十年综述
计算机视觉life
20+阅读 · 2019年5月28日
机器学习中如何处理不平衡数据?
机器之心
13+阅读 · 2019年2月17日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
【机器视觉】表面缺陷检测:机器视觉检测技术
产业智能官
25+阅读 · 2018年5月30日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
小贴士
相关VIP内容
监控视频的异常检测与建模综述
专知会员服务
49+阅读 · 2021年12月27日
基于深度神经网络的图像缺损修复方法综述
专知会员服务
26+阅读 · 2021年12月18日
【NeurIPS2021】基于关联与识别的少样本目标检测
专知会员服务
22+阅读 · 2021年11月29日
专知会员服务
17+阅读 · 2021年9月8日
专知会员服务
29+阅读 · 2021年6月4日
基于深度学习的行人检测方法综述
专知会员服务
69+阅读 · 2021年4月14日
专知会员服务
27+阅读 · 2021年4月2日
【AAAI2021】基于组间语义挖掘的弱监督语义分割
专知会员服务
16+阅读 · 2021年1月19日
相关资讯
基于深度学习的图像目标检测算法综述
专知
2+阅读 · 2022年4月16日
如何解决工业缺陷检测小样本问题?
极市平台
6+阅读 · 2022年2月24日
基于深度学习的小目标检测方法综述
专知
2+阅读 · 2021年4月29日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
目标检测技术二十年综述
计算机视觉life
20+阅读 · 2019年5月28日
机器学习中如何处理不平衡数据?
机器之心
13+阅读 · 2019年2月17日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
【机器视觉】表面缺陷检测:机器视觉检测技术
产业智能官
25+阅读 · 2018年5月30日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员