项目名称: 基于新型沟槽式周期性栅晶体管的等离子体波共振探测机理及器件制备研究

项目编号: No.11274331

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 胡伟达

作者单位: 中国科学院上海技术物理研究所

项目金额: 95万元

中文摘要: 基于晶体管等离子体波探测器是最有希望实现远红外太赫兹遥感的探测器之一,但目前这种器件的探测频率可调性、工作温度、量子效率还没有满足应用需求,需要在等离子体波共振探测机理和基于新结构晶体管等离子体波操控方面进行深入的研究。本课题拟研制一种新型基于沟槽式周期性栅双沟道晶体管的等离子体波共振探测器。利用其具有沟道电子浓度高、迁移率高、动量弛豫时间长的优点,以及双沟道等离子体波共振杂化显著提升共振吸收强度的特点,使得探测器真正进入室温下太赫兹频率探测。同时采用沟槽式周期性栅极,为入射信号和等离子体波提供波矢补偿和近场耦合,实现连续可调探测。项目提出电磁场计算与半导体量子输运计算自洽新方法,结合光学声子修正Drude模型,澄清高阶共振Restrahlen band现象和色散交叉区域共振增强现象的物理起源,揭示等离子体波共振探测机理。为等离子体波共振探测器在远红外太赫兹遥感中的应用提供基础支撑。

中文关键词: GaN HEMT;自加热效应;热电子效应;太赫兹探测器;等离子体波

英文摘要: Far infrared remote sensing technology is widely used in the astronomy and atmosphere detections. The plasmonic wave resonant detector basing on slit-grating-gate transistor is one of important devices which can realize tunable and room-temperature THz detection. Howerver, the detection frequency, quantum efficiency, and work temperature of the device can not fulfil the requirements of remote sensing applications. In this project, a new kind of tunable plasmonic resonant detector basing on slit-grating-gate double-channel HEMT will be fabricated and studied. Firstly, the double channel and high-Al barrier hetrostructure designs are used into the HEMT. These designs can supply the HEMT with high density of two-dimensional electron gas, high mobility, and long momentum relaxation time making the detector get into the real room-temperature THz frequency detection. Secondly, a slit grating gate design is used to better couple the incoming THz signal. The slit grating gate provides the near-field interaction with the two-dimensional electron gas plasmonic resonant making the device being tunable under gate voltages. This project will develop a new theoretical way which combines the electromagnetic Finite-difference time-domain method and quantum transportation final-element method at the two-dimensional calculation b

英文关键词: GaN HEMTs;self-heating effect;hot-electron effect;terahertz detectors;plasma waves

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
【经典书】图论,322页pdf
专知会员服务
123+阅读 · 2021年10月14日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
43+阅读 · 2021年2月8日
专知会员服务
22+阅读 · 2020年9月14日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
27+阅读 · 2018年4月12日
Arxiv
12+阅读 · 2018年1月12日
小贴士
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
【经典书】图论,322页pdf
专知会员服务
123+阅读 · 2021年10月14日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
43+阅读 · 2021年2月8日
专知会员服务
22+阅读 · 2020年9月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员