项目名称: 宽谱敏化的Yb3+掺杂硅(氧)氮化物制备与近红外发光性能

项目编号: No.51472028

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 刘泉林

作者单位: 北京科技大学

项目金额: 83万元

中文摘要: 具有近红外发射的量子剪裁型稀土发光材料可用于提高晶硅光伏电池的转化效率。 项目拟选取作为白光LED用荧光材料被广泛研究的硅(氧)氮化物为研究对象,通过掺杂Yb3+获得近红外发射,掺杂Ce3+或Eu2+实现宽谱吸收以及对Yb3+高效敏化,探索新型的近红外发光材料。在硅(氧)氮化合物的晶体结构中, Si与Al、O与N,以及不同阳离子之间可相互替代,形成丰富的结构类型及固溶体,可为稀土离子提供多变的晶体场。我们拟通过组分和结构调变,调控 Ce3+和Eu2+的晶体场和5d能级,从而高效敏化Yb3+。研究结构中不同晶体学位置可容纳的离子种类和含量,以及它们对敏化、能量传递和量子剪裁的影响,进而阐明稀土离子间的能量传递过程和量子剪裁机理。通过制备工艺、成分和结构的优化,获得性能优异的(在300-500 nm宽带吸收,近红外发射,高量子效率)稀土掺杂的硅(氧)氮化物太阳光谱转换材料。

中文关键词: 稀土发光材料;硅(氧)氮化合物;晶体结构;近红外发光;能量传递

英文摘要: The near infrared (NIR) quantum-cutting phosphors can be used to improve the efficiency of c-si solar cells. Rare-earth-doped silicon-(oxy)nitrides have rich structures based on [SiN4] or [(Si,Al)(N,O)4] tetrahedra, which can accommodate various cations and form complicated solid-solutions. These structures can adjust 5d energy levels of Ce3+/Eu2+ and luminescent features. The research activities are mainly focused on the silicon-(oxy)nitrides that have been demonstrated to exhibit excellent luminescence as LED phsophors. We will dope Ce3+/Eu2+ producing strong absorption in the spectral region of 300-500 nm, and co-dope Yb3+ with NIR emission well matching with c-si solar cells. We will study on crystal chemistry, and ion occupancies in different crystallographic sites, as well as their effects on sensitization, energy transfer, and quantum-cutting,and try to give energy transfer process and the quantum-cutting mechanism. The research purpose is to develop new rare-earth-activated silicon-(oxy)nitride phosphors with broadband absorption in 300-500 nm and NIR emission with high quantum, as spectral converters for c-si solar cells, by optimizing synthesis conditions, crystal chemistry, and structures.

英文关键词: rare-earth activated luminescent materials;silicon-(oxy)nitride;structrue;near infrared emission;energy transfer

成为VIP会员查看完整内容
0

相关内容

【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
58+阅读 · 2022年2月3日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
12+阅读 · 2019年4月9日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
小贴士
相关VIP内容
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
58+阅读 · 2022年2月3日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员