项目名称: DNA甲基化和非编码小分子RNA对大豆杂种优势综合调控机制研究

项目编号: No.31301046

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 生物科学

项目作者: 王煜

作者单位: 浙江大学

项目金额: 25万元

中文摘要: 杂种优势是指杂交后代的某些表型,如生物量、生长速率、育性等方面超过了其双亲的现象。杂种优势在农业上有非常广泛的应用,但其内部的分子机制仍不清楚。经典遗传学提出显性效应、超显性效应和假超显性效应等模型来解释杂种优势,但任何一种或全部已有的模型都难以解释所有的杂种优势现象。因此,目前的观点认为遗传背景不同的个体间产生的杂种优势是受一系列不同的机制调控的。在拟南芥、玉米和水稻上开展的全基因组范围的表观遗传学调查表明受siRNA调控的DNA甲基化对杂种优势有重要影响。大豆是高油高蛋白的重要的经济作物。为了调查大豆杂种优势的调控机制,拟通过高通量测序手段产生DNA甲基化、sRNA及转录组的数据,比较一组杂交亲本与其存在杂种优势的正反交后代间的表观遗传差异,预期鉴定出一批与杂种优势表型相关的受表观遗传调控的基因/座位。本研究对深入理解杂种优势的复杂调控机制以及在杂交大豆育种中的应用有重要意义。

中文关键词: G. max;杂种优势;非编码RNA;甲基化;非编码小RNA

英文摘要: Heterosis or hybrid vigor, refers to the phenomenon that offspring of individuals of a species or crosses between species show greater biomass, speed of development, and fertility than both parents. Although heterosis is widely exploited in agriculture, the details of its molecular underpinnings have remained elusive despite extensive investigation. Several genetic models, including dominance, overdominance, and pseudo-overdominance, have been supposed to explain heterosis, but neither each hypothesis nor combination of them could explain all the outcoming of heterosis. Instead, it is likely that heterosis arises in crosses between genetically distinct individuals as a result of a variety of mechanisms. Complementation of allelic variation, as well as complementation of variation in gene expression patterns, potentially contributed to heterosis. Epigenetic variation has the potential to interact in hybrid genotypes via novel mechanisms. Several genomic scaled epigenetics investigation in Arabidopsis, maize and rice revealed that DNA methylation with siRNA involved may play a role in heterosis. Soybean is an important cash crop for high oil and protein contents. Developing the hybrid soybean is crucially important since the local industry is suffering severe threat of imported transgenic soybean in China. To inve

英文关键词: G. max;heterosis;non-coding RNA;methylaiton;small RNA

成为VIP会员查看完整内容
0

相关内容

【新书】多元统计与机器学习,185页pdf
专知会员服务
88+阅读 · 2022年6月5日
【CVPR2022】提示分布学习
专知会员服务
31+阅读 · 2022年5月17日
【ICLR2022】序列生成的目标侧数据增强
专知会员服务
23+阅读 · 2022年2月14日
【WSDM2022】具有分层注意力的图嵌入
专知会员服务
36+阅读 · 2021年11月17日
基于生理信号的情感计算研究综述
专知会员服务
62+阅读 · 2021年2月9日
金融时序预测中的深度学习方法:2005到2019
专知会员服务
167+阅读 · 2019年12月4日
人工智能预测RNA和DNA结合位点,以加速药物发现
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
12+阅读 · 2021年11月1日
Arxiv
17+阅读 · 2020年11月15日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
21+阅读 · 2019年8月21日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员