项目名称: 冷等离子体制备高效催化剂用于合成气制乙醇的研究

项目编号: No.21206109

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 化学工程及工业化学

项目作者: 王召

作者单位: 天津大学

项目金额: 25万元

中文摘要: 乙醇作为一种优质的液体燃料,被认为是替代和节约汽油的最佳燃料之一。中国每年排放的焦炉煤气大约400亿立方米,如果加以利用,每年可以生产1300万吨乙醇,产生巨大的经济效益和社会效益。从保障国家能源安全的角度,采用由煤出发生产合成气,合成气再合成乙醇具有重要意义。然而现有工艺单程转化率及生成乙醇的选择性仍较低,制备出活性好、选择性高、耐受性较强的催化剂已经成为合成气合成乙醇工艺的瓶颈。 本项目利用冷等离子体处理催化剂的优势,制备出尺度、形貌和结构可控的负载型金属催化剂。通过冷等离子体还原分解无机盐,得到特定形貌结构的金属颗粒或金属氧化物,使催化剂表现出优异的活性和稳定性。运用XRD、XPS、TEM等表征手段分析催化剂与传统焙烧的催化剂的区别,建立冷等离子制备催化剂的机理规律,并采用合成气合成乙醇的反应来价该催化剂,最终制备出高选择性,高活性的合成气合成乙醇催化剂。

中文关键词: 合成气;冷等离子体;催化剂;纳米颗粒;合成乙醇

英文摘要: Ethanol received considerable interest in recent years to use in automobiles, either as an additive or as a potential substitute for gasoline. The emission of coke oven gas is 40 billion cubic meters in China every year. This coke oven gas can produce 13 million tons of ethanol. It has huge economic and social benefits. The route of syngas to ethanol is very important for nation's energy security. But this process often exhibit a low conversion and selectivity to alcohol products. The preparation of the highly efficient catalysts is the most important problem for syngas to ethanol. In this project, cold plasma will be used for the preparation of heterogeneous catalyst. The size of the metal nanoparticles will be smaller and the dispersion of the particle is higher than that by convention method. The metal precursor will be decomposed to different morphology metal oxide by plasma for better activity and stability in reaction. Characterizations using XRD, TEM and XPS analyze the difference between the plasma treated catalysts and conventional catalysts. The plasma method will be systematically investigated with the aim of establishing a new and effective technique for the preparation of highly efficient catalysts. The activities of the plasma treated catalysts will be tested for synthesis of syngas to ethanol. I

英文关键词: syngas;cold plasma;catalyst;nanoparticles;ethanol synthesis

成为VIP会员查看完整内容
0

相关内容

区块链赋能“碳达峰碳中和”白皮书 ,41页pdf
专知会员服务
40+阅读 · 2022年3月26日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
13+阅读 · 2021年8月8日
专知会员服务
66+阅读 · 2021年7月25日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
15+阅读 · 2021年5月30日
专知会员服务
40+阅读 · 2021年5月12日
零碳智慧园区白皮书(2022),66页pdf
专知
9+阅读 · 2022年2月17日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
27+阅读 · 2021年11月11日
小贴士
相关主题
相关VIP内容
区块链赋能“碳达峰碳中和”白皮书 ,41页pdf
专知会员服务
40+阅读 · 2022年3月26日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
13+阅读 · 2021年8月8日
专知会员服务
66+阅读 · 2021年7月25日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
15+阅读 · 2021年5月30日
专知会员服务
40+阅读 · 2021年5月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员