项目名称: 金属氧化物/二氧化硅纳米复合微球的自催化合成及结构调控

项目编号: No.51273051

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 崔铁钰

作者单位: 哈尔滨工业大学

项目金额: 80万元

中文摘要: 传统制备二氧化硅微球的方法不可避免地使用酸或碱性的催化剂,对pH敏感的分子或粒子具有破坏作用,因此这些方法在制备复合二氧化硅微球方面具有很大局限性。为此,我们提出利用前驱体分子间的连续自发反应(即亲核取代、自催化水解和缩合),建立近中性条件下制备有机金属盐/二氧化硅微球的新方法,并实现在二氧化硅载体中原位生长金属氧化物纳米粒子。前驱体小分子之间的亲核取代反应不但将硅氧烷基团与金属羧酸盐基团连接在同一烷基链上,从而保证金属羧酸盐基团能够被顺利引入二氧化硅微球内部,并且更为重要的是在烷基链上生成了质子化胺基。因此,硅氧烷的水解和缩合可以在温和条件下自发进行,而无需在体系中额外引入其它催化剂。进一步地,利用调节混合溶剂比例的方式,来调控硅氧烷水解和缩合以及有机羧酸根与金属离子配位的反应速率和限度,以控制有机金属盐/二氧化硅微球的结构,进而实现金属氧化物/二氧化硅微球的可控制备。

中文关键词: 自催化合成;二氧化硅微球;质子化胺基;结构调控;

英文摘要: Traditional methods of preparation of silica nanospheres would almost inevitably use acid or alkaline catalysts,which have damaging effects on pH-sensitive molecules or particles, therefore these methods have significant limitations in the preparation of composite silica nanospheres. To solve this problem, we propose a novel strategy for the preparation of organic metal salts/silica nanospheres under nearly neutral conditions through the successive spontaneous reactions (i.e. nucleophilic substitution reaction,self-catalytic hydrolysis and condensation) between precursor molecules. Then, metal oxide nanoparticles will be formed in situ in the silica matrix. The nucleophilic substitution reaction between precursor molecules will not only link the siloxane and metal carboxylate groups by alkyl chains, which can favor the introduction of metal carboxylate groups into silica matrix, but also, much more importantly, produce protonated amine groups in alkyl chains, which can act as acid catalysts for the hydrolysis and condensation of siloxane groups. As a result, self-catalytic hydrolysis and condensation will proceed spontaneously under mild conditions without introducing any other catalyst. Furthermore, by changing the ratio of mixed solvents, the rates and extents of the hydrolysis and condensation of siloxane as

英文关键词: self-catalytic synthesis;silica nanospheres;protonated amine groups;structure control;

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
28+阅读 · 2020年8月8日
使用深度学习,通过一个片段修饰进行分子优化
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关主题
相关基金
微信扫码咨询专知VIP会员