项目名称: 量子点自旋电子学器件中热流的生成机制及应用研究

项目编号: No.61274101

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 迟锋

作者单位: 渤海大学

项目金额: 80万元

中文摘要: 电流产生的热量(焦耳热)会增加器件的能耗、影响其稳定性,并将随着器件的小型化和集成度的提高变得越来越重要。近期的实验工作[Nature 475, 82 (2011)]证明,自旋极化流也会生热。这种热流主要源于铁磁体中不同自旋方向电子的能量之差,为自旋电子学提出了新的科学问题。本项目研究自旋池-量子点-铁磁体结构中自旋极化流生热的一般规律,借助量子点可调的能级、自旋池中不同自旋方向的电子各自处于不同费米能级的性质,理论预测部分铁磁体中自旋相关态密度的分布形状及其对自旋极化流生热性质的影响;在这种体系中施加适当的微波场,用光学和热学的联合手段产生和操作自旋极化流及其携带的热流;针对不同的器件结构和热流的运动规律,理论设计能够对声子库进行制冷和整个体系用作热整流器的装置。我们的研究工作对抑制和利用自旋极化流的生热、提高自旋电子学器件的工作效率及稳定性、开发新型的能源均有重要的意义。

中文关键词: 自旋电子学;生热;量子点;;

英文摘要: Heat generation by electric current (Joule heat) raises energy consumption and affects the stability of the devices, and will become even more important with its increasing miniaturization and integration density. Recent experimental work [Nature 475, 82 (2011)] demenstrates that heat can also be generated by spin-polarized current, which originates from the energy difference between electrons with opposite spin directions in the ferromagnetic electron reservoir, puting forward a new scientific subject. In this project, we intend to study the general laws of heat generation by spin-polarized current in quantum dots whose one terminal is connected to a ferromagnetic lead and the other to a spin battery. With the help of the tunable energy levels in the quantum dot and the fact that electrons with different spin directions having different Fermi energies to predict theoretically the configurations of the spin-dependent density of states in the ferromagnetic leads, as well as its impacts on the properties of heat generation by spin-polarized current; Applying approriate microwave fields to the above structure to manipulate the spin-polarized current and the corresponding heat flows; basing on different device configurations and the laws of heat flow to design theoretical model for local refrigerator and thermal rec

英文关键词: spintronics;heat generation;quantum-dot;;

成为VIP会员查看完整内容
0

相关内容

2021年中国量子计算应用市场研究报告
专知会员服务
37+阅读 · 2021年10月28日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
30+阅读 · 2021年10月12日
专知会员服务
18+阅读 · 2021年9月23日
专知会员服务
103+阅读 · 2021年8月23日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
21+阅读 · 2019年8月21日
小贴士
相关VIP内容
2021年中国量子计算应用市场研究报告
专知会员服务
37+阅读 · 2021年10月28日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
30+阅读 · 2021年10月12日
专知会员服务
18+阅读 · 2021年9月23日
专知会员服务
103+阅读 · 2021年8月23日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员