项目名称: 气相沉积法构建新型Fe、Ni基催化剂

项目编号: No.21306230

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 化学工业

项目作者: 席燕燕

作者单位: 中国石油大学(华东)

项目金额: 25万元

中文摘要: 制备活性金属组分具有高分散度、低聚集度、高稳定性特点的负载型过渡金属催化材料是提升其催化性能的重要手段。本项目将研究新型次纳米级Fe、Ni等金属/氧化物负载型催化材料的制备方法。本项目首先以金属有机化合物作为前驱体,通过气相沉积固定到载体上,而后结合适当的后处理,将金属组分转化成稳定的化学形式。通过对前驱体类型、沉积温度等条件的控制,制备尺寸、化学状态可控的次纳米级负载型过渡金属催化材料。针对负载型催化材料在实际催化过程中常常由于高温导致金属组分易于聚集的问题,本项目将在金属催化材料上进行惰性组分的二次沉积。通过控制惰性组分的沉积量,既保证有相当浓度的金属组分暴露于表面,又使得金属组分的聚集受到了阻碍。与传统的负载型过渡金属催化材料制备方法相比,本项目提出的新方法拓宽了制备该类催化材料的思路,并可望显著提高载体上有效金属活性位的浓度并改进结构的单一性,为制备高性能催化材料奠定基础。

中文关键词: 铁催化剂;镍催化剂;气相沉积;铂催化剂;表面修饰

英文摘要: Fabrication of catalysts, the active metal components on which have high dispersion,low agregation and high stability, is an important and efficient way for improving the catalytic porformance. In this proposal we focus on developping a new method for fabrication of subnanometer-sized transition metal (Fe, Ni, etc.)/metal oxides on catalytic support. Firstly, vapor deposition method will be used in fixing the organometallic compounds on the supporting oxids. Then aproporiate treatments will be utilized to convert the metal precursor to stable chemical status. By controling the type of precursors as well as the parameters of deposition process, supported subnanometer-sized catalysts with controlable size and chemical state will be constructed. In order to avoid or reduce the aggregation of the metal component during the catalytic reaction when used in high tempreture, a second deposition of an inert component such as SiO2 will be carried out on the prepared catalysts. By controling the deposition amount of this inert component, the metal concentration on the surface will have only a little loss, and at the same time, the aggregation of the metal component will be reduced or avoided. Compared to traditional fabrication methods of supported transition metal catalysts,the new method proposed in this project will ex

英文关键词: Iron catalyst;Nickel catalyst;vapor deposition;platinum catalyst;surface modification

成为VIP会员查看完整内容
0

相关内容

严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
31+阅读 · 2022年3月17日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
33+阅读 · 2021年5月7日
【上海交大】半监督学习理论及其研究进展概述
专知会员服务
71+阅读 · 2019年10月18日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
庖丁解InnoDB之REDO LOG
阿里技术
0+阅读 · 2021年11月4日
DigiTimes:下一代iPhone的芯片将基于“4nm”工艺
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
小贴士
相关主题
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员