项目名称: 钴基尖晶石氧化物/氮化钛纳米复合结构锂空气电池阴极的研究

项目编号: No.21301185

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 董杉木

作者单位: 中国科学院青岛生物能源与过程研究所

项目金额: 25万元

中文摘要: 锂空气电池具备极高的理论能量密度,受到国内外科研人员的广泛关注。然而,循环寿命低下是制约锂空气电池实际应用的瓶颈问题,造成该问题的主要原因是Li2CO3在电极表面的不可逆积累和电解液的分解。本项目拟采用兼备良好电子导电性与化学稳定性的TiN材料制备纳米管阵列,代替传统的碳材料作为阴极载体,可以避免碳材料与充放电产物(或中间产物)发生不可逆反应,减少Li2CO3的积累;在TiN纳米管阵列载体上,以电化学沉积法负载钴基尖晶石氧化物,加速Li2O2分解,降低充电电位,限制电解液分解。通过对钴基尖晶石氧化物/TiN纳米复合阴极进行电化学表征,揭示负载成分的纳米结构、电子结构与电化学行为间的构效关系。在此基础上,对充放电过程进行充分表征和理论模拟,探索阴极反应机理。本项目的开展将为设计和制备稳定、高效的锂空气电池阴极提供新思路,并为提高锂空气电池循环寿命的研究提供科学依据。

中文关键词: 钴基氧化物;氮化钛;副产物;差分电化学质谱;电解液

英文摘要: The Li-O2 battery, which has a comparable theoretical energy density with gasoline, has been considered one of the most promising energy storage devices for electric vehicles. In recent studies, carbon has been used widely as the basis of cathodes for Li-O2 cells. However, carbon materials is unstable on charging process, oxidatively decomposing to form Li2CO3. The accumulation of Li2CO3 may result in rising potential during galvanostatic charging and consequent electrolyte stability problems. In this study, nanostructured TiN materials are employed as a candidate for carbon materials, which sever as conducting framework for loading Co-based spinel to form a nanostructured Co-based spinel/TiN cathode. This cathode may avoid the irreversible reaction with Li2O2 (or superoxide), improving the distribution of LixO2 species and facilitating the cycle performance. Through tuning the nanostructure of cathode and the electronic structure of spinel species, the electrochemical performance are investigated. Furthermore, theoretical calculations are carried out to demonstrate experiment results. With new insight into the mechanism of cathode reaction, this study could be beneficial to the development of cycle performance for Li-O2 battery applications.

英文关键词: cobalt oxide;titanium nitride;byproduct;DEMS;electrolyte

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
24+阅读 · 2021年8月22日
《6G总体愿景与潜在关键技术》白皮书,32页pdf
专知会员服务
104+阅读 · 2021年6月8日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
专知会员服务
109+阅读 · 2021年4月7日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关主题
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
24+阅读 · 2021年8月22日
《6G总体愿景与潜在关键技术》白皮书,32页pdf
专知会员服务
104+阅读 · 2021年6月8日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
专知会员服务
109+阅读 · 2021年4月7日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员