项目名称: 基于静止卫星多星观测的场地TOA BRDF日更新算法研究

项目编号: No.41271373

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 天文学、地球科学

项目作者: 李元

作者单位: 国家卫星气象中心

项目金额: 75万元

中文摘要: 随着我国卫星遥感事业的发展,可见近红外通道的定量化应用在气候研究、抗旱减灾、农林统计、地物测绘等领域发挥的作用越来越重要。在此应用需求的推动下,可见近红外通道的辐射定标日益受到业内重视与关注。制约可见近红外通道场地替代定标精度的瓶颈问题是场地的双向反射分布函数(BRDF)。相对于场地替代定标6%的定标精度而言,场地BRDF受含水量、温度、植被等因素的影响变化幅度不容忽视。现有场地BRDF的更新周期无法满足需求。项目将研究建立在静止卫星多星观测数据基础之上的敦煌遥感卫星辐射校正场大气层顶(TOA)日更新BRDF算法,开展场地试验验证与修正。在此基础上将取得的研究成果推广至多场地替代定标,分别选取可应用于静止/极轨卫星的全球沙漠场目标,实现多亮度级别日更新BRDF的定标算法,以求有效提高可见近红外通道定标精度,为丰富的定量化应用提供有力保障。

中文关键词: 静止卫星;可见光-近红外遥感;场地替代定标;BRDF;

英文摘要: With the development of the satellite remote sensing technology, the quantitative application of VIS and NIR channels played increasingly important roles in the site of climate research, drought mitigation, agriculture and forestry statistics and terrain mapping. Driven by the application demand, the radiometric calibration of VIS and NIR channels were given increasingly attention and concern. Bottleneck problem of constraining the accuracy of VIS and NIR channels is the bidirectional reflectance distribution function (the BRDF). Compared to the 6% of the vicarious calibration accuracy, the BRDF changing magnitude caused by water content, temperature, vegetation and other factors cannot be ignored. Updating period of the existing BRDF cannot meet requirements. The project will study the establishment of Dunhuang remote satellite radiometric calibration site's top of the atmosphere (TOA) day updating BRDF algorithm based on the multi-satellite observations of geostationary satellite. Site experiment validation and correction will be carried out. On this basis, the achieved research results will be promoted to multi site vicarious calibration: global desert sites suitable for stationary / polar-orbiting satellite will be selected and the multi-brightness level day updating BRDF site vicarious calibration could be

英文关键词: Geostationary satellite;Visible-near infrared remote sensing;Site vicarious calibration;BRDF;

成为VIP会员查看完整内容
0

相关内容

空间数据智能:概念、技术与挑战
专知会员服务
85+阅读 · 2022年2月3日
人工智能系统可信性度量评估研究综述
专知会员服务
88+阅读 · 2022年1月30日
专知会员服务
52+阅读 · 2021年10月1日
专知会员服务
42+阅读 · 2021年9月15日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月20日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
136+阅读 · 2021年1月13日
专知会员服务
18+阅读 · 2020年12月23日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
最全综述 | 图像分割算法
计算机视觉life
14+阅读 · 2019年6月20日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
小贴士
相关主题
相关VIP内容
空间数据智能:概念、技术与挑战
专知会员服务
85+阅读 · 2022年2月3日
人工智能系统可信性度量评估研究综述
专知会员服务
88+阅读 · 2022年1月30日
专知会员服务
52+阅读 · 2021年10月1日
专知会员服务
42+阅读 · 2021年9月15日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月20日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
136+阅读 · 2021年1月13日
专知会员服务
18+阅读 · 2020年12月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员