专知《深度学习:算法到实战》315位同学在学习!网易云课堂人工智能畅销榜首位!

2019 年 1 月 1 日 专知
深度学习鼻祖Geoffrey Hinton前两天在接受《连线》专访时说,不会再有AI寒冬了,AI已经在你手机里了。吴恩达关注斯坦福刚发布的AI指数报告谈到, 人才需求两年暴增35倍。 是的,你也感受到AI在周围(刷脸、下棋、无人车、看病、教育…), 人工智能是未来 !中国在AI领域的人才需求是百万级的!我们需要更多专业的AI人才!而专知希望做一点贡献。为此,经过一年多的精心打磨准备,专知背靠中科院自动化所模式识别国家重点实验室,隆重推出《深度学习: 算法到实战》,一线教授博士带你学习深度学习的基础算法和应用实例,欢迎加入学习!




现在已有315位同学加入学习,并登陆网易云课堂深度学习畅销榜首位!

感兴趣的同学请扫码或者点击文章末尾“阅读原文”,加入学习!



专知团队


我们是专知,提供专业可信的人工智能知识分发服务,让认知协作更快更好!专知团队背靠中国科学院自动化研究所,团队成员全部来自中科院自动化所模式识别国家重点实验室。包括专知网站平台和专知公众号,有关注使用用户5万多,累计阅读用户数超过180万人次,累计阅读量360万次深度学习-从算法到实战,涵盖深度学习算法和应用实例,算法包括DNN、CNN、RNN/LSTM、GAN及强化学习等,应用实例包括计算机视觉的目标检测、图像生成,自然语言处理的文本自动摘要等,帮助学员了解、理解、掌握深度学习的基础和前沿算法,并拥有深度学习算法实战技能。

面向人群

由完整全面、脉络清晰的深度学习核心算法入门,到当前学界、工业界热门的深度学习应用实战,有效提高学生解决实际问题的能力。

学习收益
  • 掌握面向不用场景任务的深度学习应用技术

  • 熟悉前沿深度学习强化学习等热点技术,把握深度学习的技术发展趋势

  • 提升解决深度学习实际问题的能力

授课团队

问答服务:老师答疑解惑、学员互动交流。

大礼包:一百个人工智能热点主题资料大合集。


    揭开深度学习的神秘面纱,领略人工智能之美 


教学大纲

第一讲 绪论
  • 人工智能和机器学习概述

    • 人工智能历史和现状

    • 从专家系统到机器学习

  • 深度学习概述

    • 从传统机器学习到深度学习

    • 深度学习历史

    • 深度学习的能与不能


第二讲 神经网络基础
  • 浅层神经网络

    • 从生物神经元到单层感知器

    • 多层感知器

    • 反向传播和梯度消失

  • 从神经网络到深度学习

    • 逐层预训练

    • 自编码器和受限玻尔兹曼机

    • Beyond预训练


第三讲 卷积神经网络
  • 卷积神经网络绪论

    • 卷积神经网络 vs 传统神经网络

    • 卷积神经网络的基本应用

      • 图像分类 image caption

      • 图像检索 image retrieval

      • 物体检测 object detection

      • 图像分割 image segmentation

      • 图像理解 image caption

    • 应用拓展

      • 自动驾驶 self-driving

      • 人脸识别 face recognition

      • 情感识别 facial expression recognition

      • 动作识别 action recognition

      • 图像生成 image generation

      • 风格转化 style transfer

  • 基本组成结构

    • 卷积

    • 池化

    • 全连接

  • 卷积神经网络典型结构

    • AlexNet

    • ZFNet

    • VGG

    • GoogleNet

    • ResNet

  • 卷积神经网络实战(代码讲解)

  • 总结


第四讲 循环神经网络
  • 循环神经网络的应用

    • 机器翻译 machine translation

    • 语音识别 speech recognition

    • 视觉问答 visual question answering

    • 图像理解 image caption

    • 语音问答 speech question answering

  • 循环神经网络 vs 卷积神经网络

    • 技术

    • 应用场景

  • 循环神经网络的基本结构

    • 实例-智能系统

    • 多种递归结构

    • 深度RNN

    • 双向RNN

    • BPTT算法

  • 循环神经网络的模型变种

    • 传统RNN存在的问题

    • LSTM

    • Grid-LSTM

    • GRU

    • 各模型对比

  • 扩展

    • 其他解决RNN梯度消失的方法

    • 基于注意力机制的RNN (attention-based RNN)

  • 总结


第五讲 目标检测
  • 目标检测绪论

    • 概念

    • 评价准则

    • 数据集

    • 竞赛

  • 目标检测战前准备

    • 滑动窗口

    • 目标候选生成

    • 难样本挖掘

    • 非极大值抑制

    • 检测框回归

  • 目标检测:两阶段方法

    • R-CNN

    • SPP-Net

    • Fast R-CNN

    • Faster R-CNN

    • FPN

    • RFCN

  • 目标检测:单阶段方法

    • YOLO

    • SSD

    • Retina Net

  • 荟萃:目标检测方法对比

  • 10行代码实现目标检测

  • 拓展:视频中的目标检测

  • 总结


第六讲 生成对抗网络GAN基础
  • 生成式对抗网络简介

    • 背景

    • GAN案例

      • 图像生成

      • 图像超像素

      • 图像修复

      • 风格转换

      • 文字生成图片

    • GAN应用

      • 数据增广

      • 迁移学习/领域自适应

      • 无监督特征学习

      • 其他

  • 生成式对抗网络基础

    • 生成式对抗网络(Generative Adversarial Network,GAN)

      • 直观解释GAN

      • 模型和目标函数

      • 全局最优解

      • PyTorch实现

    • 条件生成式对抗网络(Conditional GAN, cGAN)

      • 直观解释cGAN

      • 模型和目标函数

      • PyTorch实现

    • 深度卷积生成式对抗网络(Deep Convolutional GAN,DCGAN)

      • 网络结构

      • PyTorch实现

    • Wasserstein GAN (WGAN)

      • JS距离缺陷

      • Wasserstein距离和Wasserstein损失

      • 模型和目标函数

      • PyTorch实现


第七讲 生成对抗网络GAN前沿与实战
  • 生成式对抗网络前沿

    • ProgressiveGAN

    • Spectral Normalization GAN

    • Self-Attention GAN

  • 生成式对抗网络实战
    以图像翻译为案例,由浅入深教你实现一个工程

    • 用GAN实现图像翻译:Pixel2Pixel

      • U-Net

      • PatchGAN

      • Instance Normalization

      • 详细的Pytorch实现

    • CycleGAN

      • Cycle-Consistent 损失

      • 详细的Pytorch实现

    • StarGAN

      • 多领域图像翻译

      • 详细的Pytorch实现


第八讲 前沿技术
  • 深度强化学习

    • 引言:强化学习相关概念、理论基础、深度强化学习的应用

    • 基于策略的方法:策略梯度法

    • 基于值的方法:Deep Q-Network

    • 两种方法的结合:Actor-Critic方法

    • 深度强化学习劝退?优势与挑战

  • 迁移学习

    • 引言:概念、定义与应用

    • 迁移学习的种类及代表性方法

    • 具化迁移学习:域自适应

    • 迁移学习展望

  • 图神经网络

    • 引言:概念与应用

    • 基于空域的图神经网络方法:以门限图递归神经网络为例

    • 基于频域的图神经网络方法:图卷积神经网络(GCN)

    • 展望

  • 深度学习可视化及解释

    • 可视化神经网路

    • 解锁黑箱模型:在路上

  • 深度学习的未来


第九讲 PyTorch入门基础
  • 如何用PyTorch完成实验?

    • 如何加载、预处理数据集?

    • 如何构建我想要的模型?

    • 如何定义损失函数、实现优化算法?

    • 如何构建对比实验(baseline)?

    • 如何迭代训练、加速计算(GPU)、存储模型?

  • 用PyTorch 实现经典模型

    • 计算机视觉经典模型实现

      • 怎么实现VGG?

      • 怎么实现GoogleNet?

      • 怎么实现ResNet?

    • 自然语言处理经典算法实现

      • 怎么实现神经网络语言模型?

      • 怎么实现Sequence to sequence + attention(含有注意力机制的序列建模)?

      • 怎么实现sequence labeling(序列标注模型)?


第十讲 PyTorch实战
  • 计算机视觉应用实战: 用PyTorch 实现实时目标检测

    • 什么是目标检测任务?

    • 目标检测的公开数据集讲解

    • 目标检测的模型讲解

    • 典型算法与实现

      • YOLO

      • SSD

  • 自然语言处理应用实战:用PyTorch 实现文本自动摘要生成

    • 什么是文本自动摘要生成任务?

    • 文本摘要生成的公开数据集讲解

    • 文本摘要生成的模型讲解

    • 典型算法与实现

      • Pointer-generator

      • Fast_abs_rl



思维导图

点击查看大图




张飞飞,江苏大学博士,中国科学院自动化研究所模式识别国家重点实验室联合培养。研究方向为深度学习,计算机视觉和图像处理等,在任意姿态人脸表情识别领域具有丰富经验。在CVPR,ACM Multimedia, TOMM等顶级会议及期刊上以第一作者发表论文6篇,获得国家奖学金,江苏大学优秀研究生奖学金等荣誉。主持江苏省省级研究生科研创新项目1项。


张怀文

课程安排



【开课时间】

2019年1月8日—2019年1月24日

每周二、四、六、日晚:20:00-22:00


【学习形式】

直播视频讲解 + QQ学员群交流答疑


报名方式

备注:专知课程,进行咨询、购买参团、加入学员群


开启你的进阶之旅

备注:购买成功后备注网易云账户名,以便核对入群


参团享优惠



> > 点击文章末尾阅读原文,直接报名 < <


登录查看更多
4

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
深度学习自然语言处理概述,216页ppt,Jindřich Helcl
专知会员服务
212+阅读 · 2020年4月26日
【哈佛《CS50 Python人工智能入门》课程 (2020)】
专知会员服务
111+阅读 · 2020年4月12日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
338+阅读 · 2020年3月17日
Arxiv
15+阅读 · 2019年6月25日
Arxiv
7+阅读 · 2019年5月31日
Single-frame Regularization for Temporally Stable CNNs
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
相关论文
Top
微信扫码咨询专知VIP会员