机器翻译是计算语言学的一个分支,是人工智能的终极目标之一,具有重要的科学研究价值。同时,机器翻译又具有重要的实用价值。随着经济全球化及互联网的飞速发展,机器翻译技术在促进政治、经济、文化交流等方面起到越来越重要的作用。 机器翻译虽已广泛应用于各个领域,但现有神经网络测试工作均未在自然语言处理的模型上进行过测试。然而,研究发现在这些翻译模型中存在不一致性问题。发表于 ICSE 2020 的论文《Automatic Testing and Improvement of Machine Translation》率先对机器翻译进行测试,并提出了一种用于检测及修复神经网络翻译器中所存在的不一致性问题的方法——TransRepair。 TransRepair 结合了变异测试及蜕变测试两种方法以检测不一致性问题。对于所检测的问题,提出了一种基于概率的后处理方法以对该问题进行修复。本期 AI Time PHD 直播间,我们很荣幸地邀请到论文的一作,北京大学孙泽宇博士为大家分享他们的研究成果!
同样,机器翻译的误译也会造成困惑及误解。例如,将传统小吃“四喜烤夫”翻译成“roasted husband”,将“小心滑倒”译为“slip and fall down carefully”等。更为严重地,出现不公平性现象,对特定的用户群体造成伤害。图1显示了几个语言对(英语→中文)的谷歌翻译结果,当主语是“men”或“male students”,将“good”翻译成“很好的 (very good)”,然而当主语是“women”或“female students”时,则将“good”翻译成“很多 (a lot)”,这种不一致性不仅会让用户感到困惑,而且显然对计算机科学领域的女性研究人员也不公平。与进行“very good”研究相比,进行“a lot”研究明显是一种更具贬义的解释。为了避免这种翻译错误,需要能够自动识别和纠正不一致性的技术。
相关链接及文献:Paper: Automatic Testing and Improvement of Machine Translation. Zeyu Sun, Jie M. Zhang, Mark Harman, Mike Papadakis, Lu ZhangLink: https://arxiv.org/pdf/1910.02688.pdfData: https://github.com/zysszy/TransRepair