【ICML2020】对抗的非负矩阵分解

2020 年 7 月 31 日 专知

Adversarial Nonnegative Matrix Factorization

(对抗的非负矩阵分解)




论文地址:

https://proceedings.icml.cc/static/paper_files/icml/2020/5336-Paper.pdf


随着网络和信息技术的不断发展,全球数据量呈现爆炸式增长。这些海量、复杂的数据已经对社会经济、政治、文化以及生活等方面产生了深远的影响。然而,数据在采集或者传送过程中(例如:成像、扫描、传输等)难免会受到噪声的污染,这对数据的后续处理(例如:特征学习)是很不利的。目前存在的方法仅能够处理单一的有规则的噪声(例如:高斯、拉普拉斯噪声)。显然,这离实际的需求相差甚远。


为了解决这个问题,我们从学习者和攻击者的角度出发,提出一种对抗的非负矩阵分解方法。这是目前为止第一个有关对抗的非负矩阵分解的工作。与专注于常规输入或某些特定类型噪声的传统模型不同,我们的方法借助对抗训练的优势来处理各种不同类型的噪声。我们使用交替方向迭代法解决所提出的全新模型,并证明了算法的收敛性。为了在理论上保证模型的合理性,我们在不同条件下提供了模型的鲁棒性分析。我们在具有各种噪声条件(例如不规则的遮挡)的数据集上设计了一系列实验。所有的实验结果证明了我们的算法在性能上始终优于其他相关方法。


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“ANMF” 可以获取《【ICML2020】对抗的非负矩阵分解》专知下载链接索引

专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询
点击“阅读原文”,了解使用专知,查看5000+AI主题知识资料
登录查看更多
4

相关内容

【ICML2020】文本摘要生成模型PEGASUS
专知会员服务
34+阅读 · 2020年8月23日
【ICML2020】通过神经引导的A*搜索学习逆合成设计
专知会员服务
16+阅读 · 2020年8月18日
专知会员服务
42+阅读 · 2020年7月7日
【ICML2020-浙江大学】对抗性互信息的文本生成
专知会员服务
43+阅读 · 2020年7月4日
【ICML2020】对比多视角表示学习
专知会员服务
52+阅读 · 2020年6月28日
【MIT-ICML2020】图神经网络的泛化与表示的局限
专知会员服务
42+阅读 · 2020年6月23日
【ICML2020】持续终身学习的神经主题建模
专知会员服务
37+阅读 · 2020年6月22日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
79+阅读 · 2020年6月11日
最新《图嵌入组合优化》综述论文,40页pdf
Arxiv
11+阅读 · 2018年10月17日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
8+阅读 · 2018年4月8日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
【ICML2020】文本摘要生成模型PEGASUS
专知会员服务
34+阅读 · 2020年8月23日
【ICML2020】通过神经引导的A*搜索学习逆合成设计
专知会员服务
16+阅读 · 2020年8月18日
专知会员服务
42+阅读 · 2020年7月7日
【ICML2020-浙江大学】对抗性互信息的文本生成
专知会员服务
43+阅读 · 2020年7月4日
【ICML2020】对比多视角表示学习
专知会员服务
52+阅读 · 2020年6月28日
【MIT-ICML2020】图神经网络的泛化与表示的局限
专知会员服务
42+阅读 · 2020年6月23日
【ICML2020】持续终身学习的神经主题建模
专知会员服务
37+阅读 · 2020年6月22日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
79+阅读 · 2020年6月11日
Top
微信扫码咨询专知VIP会员