人工智能 | 国际会议/SCI期刊专刊信息5条

2018 年 12 月 7 日 Call4Papers
人工智能

CLD2 2019

The workshop on Classifier Learning from Difficult Data

全文截稿: 2018-12-15
开会时间: 2019-06-12
会议难度: ★★
CCF分类: 无
会议地点: Faro, Algarve, Portugal
网址:http://cldd.kssk.pwr.edu.pl/
Nowadays many practical decision task require to build models on the basis of data which included serious difficulties, as imbalanced class distributions, high number of classes, high-dimensional feature, small or extremely high number of learning examples, limited access to ground truth, data incompleteness, or data in motion, to enumerate only a few. Such characteristics may strongly deteriorate the final model performances. Therefore, the proposition of the new learning methods which can combat the mentioned above difficulties should be the focus of intense research. The main aim of this workshop is to discuss the problems of data difficulties, to identify new issues, and to shape future directions for research.

Topics of interest
Learning from imbalanced data
learning from data streams, including concept drift management
learning with limited ground truth access
learning from high dimensional data
learning with a high number of classes
learning from massive data, including instance and prototype selection
learning on the basis of limited data sets, including one-shot learning
learning from incomplete data
case studies and real-world applications



人工智能

BigDaCI 2019

International Conference on Big Data Analytics, Data Mining and Computational Intelligence

全文截稿: 2019-01-28
开会时间: 2019-07-16
会议难度: ★★
CCF分类: 无
会议地点: Porto, Portugal
网址:http://bigdaci.org/
The conference is expected to provide an opportunity for the researchers to meet and discuss the latest solutions, scientific results and methods in solving intriguing problems in the fields of Big Data Analytics, Intelligent Agents and Computational Intelligence.


人工智能

NeuroIS 2019

NeuroIS Retreat

全文截稿: 2019-03-10
开会时间: 2019-06-04
会议难度: ★★
CCF分类: 无
会议地点: Vienna, Austria
网址:http://www.neurois.org/neurois-retreat-2019/
NeuroIS studies comprise conceptual and empirical works, as well a theoretical and design science research. It includes research based on
all types of neuroscience and physiological methods. Contributions may address the following topics, among others:

employment of neurophysiological tools to study IS phenomena, e.g., technology adoption, mental workload, website design, flow, virtual worlds, emotions and human-computer interaction, commerce, social networks, information behavior, trust, IT security, usability, avatars, music and user interfaces, multitasking, memory, attention, IS design science, risk, knowledge processes, business process modeling, ERP systems
application of psychophysiological approaches to study technostress, information overload, and IT addiction
identification of the neural correlates of IS constructs based on neuroscience methods
software prototypes of NeuroIS applications, which use bio-signals (e.g., EEG, skin conductance, pupil dilation) as system input
discussion of methodological and ethical issues and evaluation of the status of the NeuroIS field



人工智能

ICRSA 2019

International Conference on Robot Systems and Applications

全文截稿: 2019-03-25
开会时间: 2019-08-04
会议难度: ★
CCF分类: 无
会议地点: Moscow, Russia
网址:http://www.icrsa.org
Topics of interest for submission include, but are not limited to:
Underwater/Aerial Robots
Agriculture Robots
Space Robotics
Biomimetic robotics
Intelligent Transport Systems
Networked robots
Mobiligence
Rescue Robots
SWARM Intelligent Robots
Domestic Personal Robots
Visual Servoing/Robot vision
Medical/rehabilitation robotics
Perception/Learning
Mechanism and Robot Design
Human-Robot Interface
Distributed Robot Coordination
Multi-Agent Systems
Micro-robot
Humanoids
Service/Life Support Robots
Intelligent Security and Surveillance Systems
IAS for Manufacturing
Professional Service Robots
Haptics/Teleoperation
Motion Planning
Navigation/Localization
Robot Simulations



人工智能

Artificial Intelligence in Medicine

Precision Digital Medicine and Health

全文截稿: 2019-03-31
影响因子: 2.879
CCF分类: C类
中科院JCR分区:
  • 大类 : 工程技术 - 3区
  • 小类 : 计算机:人工智能 - 3区
  • 小类 : 工程:生物医学 - 3区
  • 小类 : 医学:信息 - 3区
网址: http://www.journals.elsevier.com/artificial-intelligence-in-medicine/
Advances in artificial intelligence tools and methods provide better insights, reduce waste and wait time, and increase speed, service efficiencies, level of accuracy, and productivity in health care and medicine [1]. Also, the recent revolution in digital devices (e.g. mobile apps, fitness trackers, sensors, IoT assets) and their software applications enables clinicians and health care workers, consumers and patients to make better informed decisions [2]. Moreover, new initiatives such as precision health and medicine emphasize the importance of focusing on individuals’ risk factors for disease prevention, early diagnosis, and intervention [3].

This special issue of theArtificial Intelligence in Medicinejournal seeks original contributions presenting significant results on theory, methods, systems, and applications of data mining, machine learning, databases, network theory, natural language processing, knowledge representation, artificial intelligence, semantic web, and big data analytics, focused on applications in precision health and digital medicine. The topics of interest include, but are not limited to, the following areas:

- Knowledge Representation and Extraction

- Integrated Health Information Systems

- Patient Education

- Patient-Focused Workflows

- Shared Decision Making

- Geographical Mapping and Visual Analytics for Health Data

- Social epidemiology

- Social Media Analytics

- Epidemic Intelligence

- Predictive Modeling and Decision Support

- Semantic Web and Web Services

- Biomedical Ontologies, Terminologies, and Standards

- Bayesian Networks and Reasoning under Uncertainty

- Temporal and Spatial Representation and Reasoning

- Case-based Reasoning in Healthcare

- Crowdsourcing and Collective Intelligence

- Risk Assessment, Trust, Ethics, Privacy, and Security

- Sentiment Analysis and Opinion Mining

- Computational Behavioral/Cognitive Modeling

- Health Intervention Design, Modeling and Evaluation

- Online Health Education and E-learning

- Mobile Health

- Internet of Things (IoT) in Health and Medicine

- Applications in Epidemiology and Surveillance (e.g. Bioterrorism, Participatory Surveillance, Syndromic Surveillance, Population Screening)



下载Call4Papers App,获取更多详细内容!


登录查看更多
1

相关内容

计算智能(Computational Intelligence)这本领先的国际期刊促进和刺激了人工智能(AI)领域的研究。计算智能涵盖了从人工智能的工具和语言到其哲学含义的广泛问题,为实验和理论研究、调查和影响研究的出版提供了一个活跃的论坛。该杂志是为了满足学术和工业研究中广泛的人工智能工作者的需求而设计的。 官网地址:http://dblp.uni-trier.de/db/journals/ci/
【CCL 2019】2019信息检索趋势,山东大学教授任昭春博士
专知会员服务
29+阅读 · 2019年11月12日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
110+阅读 · 2020年2月5日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
【CCL 2019】2019信息检索趋势,山东大学教授任昭春博士
专知会员服务
29+阅读 · 2019年11月12日
相关资讯
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Top
微信扫码咨询专知VIP会员