本周值得读:7份最新「Paper + Code」 | PaperDaily #22

2017 年 12 月 5 日 PaperWeekly 让你更懂AI的



在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。


在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。


点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐。

这是 PaperDaily 的第  22 篇文章

[ 自然语言处理 ]


SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning

@guotong1988 推荐

#Seq2Seq

Text2SQL,根据自然语言生成结构化 SQL 语句。

论文链接

http://www.paperweekly.site/papers/1273

代码链接

https://github.com/xxj96/SQLNet


Dynamic Evaluation of Neural Sequence Models

@utopiar 推荐

#Recurrent Neural Networks

本文提出使用动态评估来改进神经序列模型的性能。 模型通过基于梯度下降的机制适应最近的历史,将以更高概率分配给重新出现的连续模式。动态评估将 Penn Treebank 和 WikiText-2 数据集上的 perplexities 分别提高到 51.1 和 44.3。

论文链接

http://www.paperweekly.site/papers/1279

代码链接

https://github.com/benkrause/dynamic-evaluation


Exploring the Syntactic Abilities of RNNs with Multi-task Learning

@Andy 推荐

#Multi-task Learning

本文主要通过了对一致性预测还有 CCG 超标记进行多任务学习,来展示了如何通过多任务学习,让 RNN 能够学习出更加复杂的句法表达。此外还发现利用一致性预测的训练数据,也可以提高其他只有有限训练数据任务的表现。这样的多任务模型,还可以将语法知识注入进语言模型中去(当然也包括机器翻译)。

论文链接

http://www.paperweekly.site/papers/1235

代码链接

https://github.com/emengd/multitask-agreement



[ 计算机视觉 ]


StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

@paperweekly 推荐

#GAN

Reddit 热文,利用 GAN 自定义表情和面部特征。StarGAN 是一种全新的可扩展方法,仅使用一个模型就能为多个域执行图像到图像转换。

论文链接

http://www.paperweekly.site/papers/1227

代码链接

https://github.com/yunjey/StarGAN



What is the Role of Recurrent Neural Networks (RNNs) in an Image Caption Generator?

@jamiechoi 推荐

#Image Captioning

文章比较了 RNN 在 image caption 里的两种作用:1. Inject模型:RNN 用来 encode 文字和图片;2. Merge 模型:RNN 只 encode 文字,图片在较后的阶段再与文字信息结合。最后得出结论,Merge 模型较好。

论文链接

http://www.paperweekly.site/papers/1200

代码链接

https://github.com/mtanti/rnn-role



[ 机器学习 ]


Dilated Recurrent Neural Networks

@snowwalkerj 推荐

#RNN

本文提出的 dilated RNN,解决了长程依赖的问题,同时可提高并行率,提高计算速度;提出 Mean Recurrent Length 指标,衡量 RNN 可记忆的时间长度,仅用普通的 RNN 模块在多项任务上达到 state of art 效果。

论文链接

http://www.paperweekly.site/papers/1220

代码链接

https://github.com/code-terminator/DilatedRNN


Multi-Rate Deep Learning for Temporal Recommendation

@Ttssxuan 推荐

#LSTM

使用多种时间粒度进行用户行为预测,并为大量数据提出类似词嵌的预训方法。 使用 DSSM 建模用户静态兴趣,使用一个 LSTM 时序网络建模用户短期兴趣,使用一个 LSTM 时序网络建模全局用户兴趣。

论文链接

http://www.paperweekly.site/papers/1208

代码链接

https://github.com/sonyisme/keras-recommendation


本文由 AI 学术社区 PaperWeekly 精选推荐,社区目前已覆盖自然语言处理、计算机视觉、人工智能、机器学习、数据挖掘和信息检索等研究方向,点击「阅读原文」即刻加入社区!


 我是彩蛋 

解锁新功能:热门职位推荐!


PaperWeekly小程序升级啦


今日arXiv√猜你喜欢√热门职位


找全职找实习都不是问题

 

 解锁方式 

1. 识别下方二维码打开小程序

2. 用PaperWeekly社区账号进行登陆

3. 登陆后即可解锁所有功能


 职位发布 

请添加小助手微信(pwbot01)进行咨询

 

长按识别二维码,使用小程序

*点击阅读原文即可注册




关于PaperWeekly


PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。


登录查看更多
1

相关内容

多任务学习(MTL)是机器学习的一个子领域,可以同时解决多个学习任务,同时利用各个任务之间的共性和差异。与单独训练模型相比,这可以提高特定任务模型的学习效率和预测准确性。多任务学习是归纳传递的一种方法,它通过将相关任务的训练信号中包含的域信息用作归纳偏差来提高泛化能力。通过使用共享表示形式并行学习任务来实现,每个任务所学的知识可以帮助更好地学习其它任务。
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
51+阅读 · 2020年5月16日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
必读的10篇 CVPR 2019【生成对抗网络】相关论文和代码
专知会员服务
33+阅读 · 2020年1月10日
八篇 ICCV 2019 【图神经网络(GNN)+CV】相关论文
专知会员服务
30+阅读 · 2020年1月10日
BERT进展2019四篇必读论文
专知会员服务
68+阅读 · 2020年1月2日
专知会员服务
54+阅读 · 2019年12月22日
【综述】关键词生成,附10页pdf论文下载
专知会员服务
53+阅读 · 2019年11月20日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
本周值得读:13 份最新开源「Paper + Code」
PaperWeekly
9+阅读 · 2018年1月19日
本周不容错过的的9篇NLP论文 | PaperDaily #21
PaperWeekly
22+阅读 · 2017年12月1日
Arxiv
6+阅读 · 2018年5月22日
Arxiv
6+阅读 · 2018年4月21日
Arxiv
9+阅读 · 2016年10月27日
VIP会员
相关VIP内容
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
51+阅读 · 2020年5月16日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
必读的10篇 CVPR 2019【生成对抗网络】相关论文和代码
专知会员服务
33+阅读 · 2020年1月10日
八篇 ICCV 2019 【图神经网络(GNN)+CV】相关论文
专知会员服务
30+阅读 · 2020年1月10日
BERT进展2019四篇必读论文
专知会员服务
68+阅读 · 2020年1月2日
专知会员服务
54+阅读 · 2019年12月22日
【综述】关键词生成,附10页pdf论文下载
专知会员服务
53+阅读 · 2019年11月20日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Top
微信扫码咨询专知VIP会员