自动化所在人脸图像老化生成算法方面实现新突破

2019 年 7 月 19 日 中国科学院自动化研究所


CASIA
解锁更多智能之美


【摘要 由于同一个体年龄跨度较大的人脸图像难以收集,大多数现有的年龄老化方法使用不成对的数据学习年龄映射。然而,年轻和年老人脸图像的匹配歧义是这种不成对的数据所固有的,这种歧义会导致生成图像中的人脸属性出现不自然的变化,而且这种问题难以通过加入身份信息损失解决。在这片文章中,我们提出了一种基于属性引导的人脸年龄老化图像生成算法来解决前述问题。具体来说,我们将人脸属性向量嵌入生成器和判别器中以使得生成年老人脸图像中的属性和输入图像相吻合。除此以外,为了提高生成图像的视觉可信度,我们引入了小波包变换用于提取图像的多尺度纹理信息。定性和定量实验结果均表明我们提出的模型能够生成逼真的老化人脸,并且在现有数据集上能够达到最优性能。


人脸年龄老化(Face Aging)指的是基于一幅给定的人脸图像,生成指定年龄的相应老化人脸图像,可用于帮助解决跨年龄人脸识别等问题。由于大规模成对的训练数据(Paired data,同一个人在不同年龄段的人脸图像)收集成本巨大,现有的人脸年龄老化算法[1, 2, 3]通常使用不成对的数据(Unpaired data)对非循环结构(non-cyclic)的GAN网络进行训练。在这种情况下,对于任意一张输入人脸图像而言,数据集中并不存在该图像在指定年龄段中的对应图像(exact aged counterpart),所以有可能会产生图像映射歧义,使得模型学习到除了年龄老化以外的变化模式,最终导致生成的老化人脸图像中的人脸属性和输入图像不一致,而这种属性的改变难以被常用的Identity Loss所避免(见图1)。

图1 年龄老化前后人脸属性出现变化的例子


针对这个问题,自动化所智能感知与计算研究中心孙哲南、李琦、刘云帆等人提出将包含人脸属性信息的向量嵌入生成器和判别器中对模型的训练加以引导(Facial Attribute Embedding, FAE)。为了切实保证人脸属性信息能够有效地对模型所学到的图像映射进行约束,我们提出只选择和输入图像具有尽量相似人脸属性的真实年老图像作为正样本,生成年老图像和真实年轻图像均作为负样本进行对抗训练,使得判别器对年龄和人脸属性均具有判别能力,从而引导生成器合成与输入样本具有相同人脸属性的老化人脸图像。我们提出的模型框架如图2所示。

图2  模型框架示意图


我们在两个常用数据集,MorphCACD2000上进行了大量的实验。实验结果表明,我们提出的方法能够在保持年龄老化准确性和身份信息不变的情况下,有效提高图像变换前后人脸属性的保持率。


图3  人脸年龄老化实验的部分生成结果


表1  Morph和CACD上的年龄老化准确性实验。为了公平起见,对于每一个年龄段而言,自然和合成的人脸图像都被送入Face++ API进行年龄估计,并以平均年龄的差作为年龄老化准确性的衡量标准。


表2  Morph和CACD上的身份信息验证实验结果


表3  Morph和CACD上的‘Gender’和‘Race’属性保持实验结果



智显未来,洞见新知
Discover Intelligence Future

更多精彩内容,欢迎关注

中科院自动化所官方网站:

http://www.ia.ac.cn

欢迎后台留言、推荐您感兴趣的话题、内容或资讯,小编恭候您的意见和建议!如需转载或投稿,请后台私信。

作者:孙哲南、李琦、刘云帆

编辑:鲁宁

排版:刘琪




登录查看更多
7

相关内容

一个具体事物,总是有许许多多的性质与关系,我们把一个事物的性质与关系,都叫作事物的属性。 事物与属性是不可分的,事物都是有属性的事物,属性也都是事物的属性。 一个事物与另一个事物的相同或相异,也就是一个事物的属性与另一事物的属性的相同或相异。 由于事物属性的相同或相异,客观世界中就形成了许多不同的事物类。具有相同属性的事物就形成一类,具有不同属性的事物就分别地形成不同的类。
专知会员服务
49+阅读 · 2020年6月14日
专知会员服务
41+阅读 · 2020年2月20日
必读的10篇 CVPR 2019【生成对抗网络】相关论文和代码
专知会员服务
31+阅读 · 2020年1月10日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
53+阅读 · 2019年11月20日
从无到有!自动化所提出海量虚拟数据生成新方法
中国科学院自动化研究所
5+阅读 · 2019年9月16日
能生成逼真图像的不只有 GAN
机器学习算法与Python学习
8+阅读 · 2019年6月6日
【紫冬新作】人脸识别新突破:真实场景下的大规模双样本学习方法
中国科学院自动化研究所
11+阅读 · 2019年3月7日
【学界】自动化所在高清真实图像生成领域获得新突破
GAN生成式对抗网络
3+阅读 · 2018年9月27日
生成对抗网络研究人脸识别领域获进展
中科院之声
8+阅读 · 2018年9月24日
基于GAN的极限图像压缩框架
论智
11+阅读 · 2018年4月15日
人脸图像保护和网纹人脸识别
机器学习研究会
8+阅读 · 2017年12月15日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
6+阅读 · 2018年4月3日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
从无到有!自动化所提出海量虚拟数据生成新方法
中国科学院自动化研究所
5+阅读 · 2019年9月16日
能生成逼真图像的不只有 GAN
机器学习算法与Python学习
8+阅读 · 2019年6月6日
【紫冬新作】人脸识别新突破:真实场景下的大规模双样本学习方法
中国科学院自动化研究所
11+阅读 · 2019年3月7日
【学界】自动化所在高清真实图像生成领域获得新突破
GAN生成式对抗网络
3+阅读 · 2018年9月27日
生成对抗网络研究人脸识别领域获进展
中科院之声
8+阅读 · 2018年9月24日
基于GAN的极限图像压缩框架
论智
11+阅读 · 2018年4月15日
人脸图像保护和网纹人脸识别
机器学习研究会
8+阅读 · 2017年12月15日
Top
微信扫码咨询专知VIP会员