Fastly 全球规模边缘云计算实践

2021 年 12 月 9 日 InfoQ

作者 | Ethan Lu
译者 | Sambodhi
策划 | 辛晓亮

GIPHY 提供大量的 GIF 媒体内容。事实上,每天有超过 100 亿条内容。除代表 GIF 实际下载的媒体请求外,我们还提供了公共 API 和 SDK 服务,让开发者可以在他们的产品中使用,从而使他们的用户能够访问我们庞大的库。

和很多每天都有大量流量的科技公司一样,我们面临着可扩展性的挑战。系统必须能够处理大量的请求 (在每秒 10000 个请求之内),并且响应延迟很小。最糟糕的事莫过于等待加载,特别是 GIF!

这就是边缘云平台(edge cloud platform)发挥作用的地方:边缘云平台并不是让我们的 AWS 服务器处理每个请求,而是尽可能多地缓存媒体内容和搜索结果 JSON 负载。这样做是非常有效的,因为媒体内容和 API 响应都不会频繁改变。边缘云平台服务器还将请求负载分配给不同的区域。我们使用 Fastly 驱动边缘云平台,为用户提供了数十亿条内容。

1 Fastly 解决方案

Fastly 提供多种功能,使我们能够大规模地交付内容。这些特性可以大致归类为:

  • 缓存分层

  • 缓存管理

  • 边缘计算

缓存分层

基本边缘云平台的设置是将内容缓存在边缘。这些服务器节点分布在全球,向在其区域内发送请求的用户提供缓存内容。如果边缘节点没有任何内容,则会向原始服务器(origin server)发送请求,以便检索内容。

这样的单层设置存在缺陷。每一个边缘节点都根据其区域的请求维护自己的缓存。所以,一个新的内容片段可能不会在任何一个边缘节点上被缓存,这可能会导致当每个边缘节点都重复相同的内容请求时,到我们的原始服务器的流量会激增。由于病毒式内容的流行程度越来越高,这种行为常会出现。

Fastly 提供名为 Origin Shield 的第二层缓存服务。现在,可以从 Origin Shield 层检索缓存中没有请求内容的边缘节点,请求只需要到达我们的原始服务器。

缓存管理

既然内容被缓存在边缘和 Origin Shield,我们需要设法管理其缓存策略。并不是所有的内容都应该保持相同的缓存时间,或者说 TTL(Time to Live,生存时间)。例如,单个 GIF 的信息不会有太大的变化,所以它的 API 响应可以在一个相当长的一段时间内被缓存。而 Trending Endpoint 的 API 响应则返回当前趋势 GIF 的持续更新列表,由于趋势的性质,它需要在一个较短的 TTL 上。

Fastly 是由 Varnish 驱动的,所以所有的配置都采用 Varnish 配置语言(VCL)代码的形式执行。边缘和 Origin Shield 都运行 VCL 代码,因此我们能够通过一些简单的 VCL 代码,基于 API 端点路径设置各种缓存 TTL:

in vcl_fetchif (req.url ~ "^/v1/gifs/trending") { # set 5 minute ttl for trending responses set beresp.ttl = 600s; return(deliver);}

并不总是用 VCL 代码来设置缓存 TTL。发送到 Origin 的 API 请求,可以在 Origin 的响应中对缓存控制指令进行编码。仅需设置 VCL 代码即可使其被重写。在 Origin 中,我们可以通过在 API 响应中设置缓存控制头,将这一决定传递给 Fastly 的 Origin Shield 和边缘节点。尤其是 Surrogate-Control 头,因为这个头将仅用于 Fastly 节点。所以我们可以更新上述 VCL,使 Surrogate-Control 优先于端点缓存策略,如下所示:

# in vcl_fetchif (beresp.http.Surrogate-Control ~ "max-age" || beresp.http.Cache-Control ~ "(s-maxage|max-age)") {  # upstream set some cache control headers, so Fastly will use its cache TTL  return(deliver);} else {  # no cache headers, so use cache policies for endpoints  if (req.url ~ "^/v1/gifs/trending") {   # set 10 minute ttl for trending responses   set beresp.ttl = 600s;   return(deliver);  }}

通过这样的设置,我们可以让缓存内容通过动态 TTL 策略自动失效,从而满足我们的需求,但是如果我们不希望等待缓存自然过期,也需要显式地让缓存失效。只需通过缓存键(URL)就可以让缓存失效。对于媒体来说,这很有效,但是对 API 的响应有点复杂。

例如,我们的 API 搜索端点可以为不同的查询返回相同的 GIF,但是如果我们希望使其失效,则无法知道每个可能生成 GIF 的 URL:

# same GIF can appear in the response of all of these API callshttps://api.giphy.com/v1/gifs/search?api_key=__KEY1__&q=hahahttps://api.giphy.com/v1/gifs/search?api_key=__KEY1__&q=hehehttps://api.giphy.com/v1/gifs/search?api_key=__KEY2__&q=lolhttps://api.giphy.com/v1/gifs/search?api_key=__KEY3__&q=laugh

对于这种情况,我们利用了 Fastly 的代理键(Surrogate Key)!顾名思义,代理键能够唯一地识别缓存的内容,与缓存键的方式基本相同。与缓存键不同,每个存储结果可以有多个代理键,我们可以设置代理键。通过在每个 API 响应中显示的 GIF ID,使我们可以确定包含特定 GIF 的多个缓存内容:

# same GIF (gif_id_abc) can appear in the response of all of these API callshttps://api.giphy.com/v1/gifs/search?api_key=__KEY1__&q=haha    Assign Surrogate Key: gif_id_abchttps://api.giphy.com/v1/gifs/search?api_key=__KEY1__&q=hehe    Assign Surrogate Key: gif_id_abchttps://api.giphy.com/v1/gifs/search?api_key=__KEY2__&q=lol    Assign Surrogate Key: gif_id_abchttps://api.giphy.com/v1/gifs/search?api_key=__KEY3__&q=laugh    Assign Surrogate Key: gif_id_abc

还可以为同一内容添加多个代理键:

# same GIF (gif_id_abc) can appear in the response of all of these API callshttps://api.giphy.com/v1/gifs/search?api_key=__KEY1__&q=haha    Assign Surrogate Key: gif_id_abchttps://api.giphy.com/v1/gifs/search?api_key=__KEY1__&q=hehe    Assign Surrogate Key: gif_id_abchttps://api.giphy.com/v1/gifs/search?api_key=__KEY2__&q=lol    Assign Surrogate Key: gif_id_abchttps://api.giphy.com/v1/gifs/search?api_key=__KEY3__&q=laugh    Assign Surrogate Key: gif_id_abc

代理键是一个强大的特性,可以让我们选择合适的缓存,非常精确而简单地使其失效。通过这种设置,我们可以在下列情况使缓存失效:

  • 使所有包含特定 GIF 的缓存 API 响应失效;

  • 使针对特定 API 键的所有缓存 API 响应无效;

  • 使查询某些单词的所有缓存 API 响应无效。

在边缘运行代码

VCL 为我们在边缘云平台的配置方面提供了大量功能。我们之前展示了配置如何为边缘和 Origin Shield 节点设置各种缓存 TTL 策略,但是我们还可以使用 VCL 设置请求信息。

我们可以用代码来重写传入的请求 URL。如果我们需要修改我们的 API 端点,那么这样做会更方便,而不用麻烦我们的消费者来更新他们的调用。

# in vcl_recvif (req.url ~ “^/some-old-endpoint”) {    # rewrite to the new endpointset req.url = regsub(req.url, “/some-old-endpoint”, “/new-and-improved-endpoint”);}

还可以选择一定比例的传入请求来测试实验特性。利用 Fastly 的随机性库,我们可以为某些请求中添加一个特殊的头,以实现原始服务器上的新行为。

# in vcl_recvset req.http.new_feature = 0if (randombool(1,10000)) {    # .01% of the traffic gets to see the new featureset req.http.new_feature = 1;}

它结合了 Fastly 的边缘字典,使得我们可以用最少的代码建立不同的行为。

# API keys that will have a percentage of their request use the new featuretable new_feature_access {    “__API_KEY1__”: “1”,    “__API_KEY2__”: “5”,    “__API_KEY3__”: “1000”,}sub vcl_recv {set req.http.new_feature = 0# check if request has an api key that is setup to have a percentage of its requests use the new featureif (randombool(std.atoi(table.lookup(new_feature_access, subfield(req.url.qs, "api_key", "&"), "0")),10000)) {set req.http.new_feature = 1;}return(lookup);}

这只是触及了 VCL 实现的功能的皮毛。如果你想知道还有什么可以做的,可以在这里找到 Fastly 的文档!

https://developer.fastly.com/

2 技巧提示

我们使用 Fastly 的很多特性来为世界提供 GIF 动画内容。但是,当你可以使用如此多的特性时,配置边缘云平台可能会变得非常复杂,因此,下面是一些我们推荐的技巧提示可以帮助你完成这个任务。

在边缘和 Origin Shield 中执行 VCL

对于两层缓存设置,有一个需要记住的关键问题是,将在边缘和 Origin Shield 执行相同的 VCL 代码。这可能导致 VCL 代码在请求 / 响应的状态信息更改时出现意外的结果。

举例来说,我们之前的 VCL 代码将根据由上游缓存控制头或 VCL 代码本身指定的缓存 TTL,为 Origin Shield 和边缘节点设置缓存 TTL:

# in vcl_fetchif (beresp.http.Surrogate-Control ~ "max-age" || beresp.http.Cache-Control ~ "(s-maxage|max-age)") {  # upstream set some cache control headers, so Fastly will use its cache TTL  return(deliver);} else {  # no cache headers, so use cache policies for endpoints  if (req.url ~ "^/v1/gifs/trending") {   # set 10 minute ttl for trending responses   set beresp.ttl = 600s;   return(deliver);  }}

假设对于 Trending Endpoint,我们也设置了响应的 Cache-Control 头,这样我们就可以指示调用方将内容缓存到另一段的时间。这样做只需按以下步骤:

# in vcl_fetchif (beresp.http.Surrogate-Control ~ "max-age" || beresp.http.Cache-Control ~ "(s-maxage|max-age)") {  # upstream set some cache control headers, so Fastly will use its cache TTL  return(deliver);} else {  # no cache headers, so use cache policies for endpoints  if (req.url ~ "^/v1/gifs/trending") {   # set 10 minute ttl for trending responses   set beresp.ttl = 600s;   # set 30 second ttl for callers   set beresp.http.cache-control = "max-age=30";   return(deliver);  }}

Origin Shield 会执行这段 VCL 代码,向响应的头添加 Cache-Control 头,并将其返回到边缘。但是,在边缘处,它将看到响应中设置了 Cache-Control,并会执行 if 语句。这将导致边缘节点使用 30 秒的缓存 TTL,而不是预期的 10 分钟!

幸运的是,Fastly 提供了一种区分边缘和 Origin Shield 的方法,它在请求中设置了头(Fastly-FF):

# in vcl_fetchif (req.url ~ "^/v1/gifs/trending") {   # set 10 minute ttl for trending responses   set beresp.ttl = 600s;   return(deliver);}# in vcl_deliverif (!req.http.Fastly-FF) {   # set 30 second ttl for callers   set resp.http.cache-control = "max-age=30";}

通过这个添加,Cache-Control 头将仅在边缘节点上设置,我们的缓存策略再次按预期运行!

调试和测试

我们刚才提到的陷阱可能难以发现和调试。VCL 代码只是运行在服务器上,并向你显示响应和响应头信息。只需将调试信息添加到自定义头信息中,并在响应中查看它们,但是这很快就会变得不方便了。

所幸的是,Fastly Fiddle 工具在执行 VCL 代码时能得到更好的信息。在这个工具中,我们可以模拟各种 VCL 代码部分,并了解 Fastly 的边缘以及 Origin Shield 服务器将如何处理 VCL 代码的信息。

以下是上述示例的 fiddle,显示双重执行 VCL 将影响缓存 TTL。

我们在左边的适当部分设置了 VCL,然后执行它,查看 Fastly 将如何处理右边的请求:

上图展示了在请求通过 edge 和 Origin Shield 节点时,关于它的生命周期的许多有用信息。实际环境中,VCL 代码可能会非常复杂,而这个工具在这种情况下非常出色。

作者简介

Ethan Lu,API 团队技术领导。

原文链接

https://engineering.giphy.com/how-giphy-uses-fastly-to-achieve-global-scale/

今日好文推荐

离职 Oracle 首席工程师怒喷:MySQL 是“超烂的数据库”,建议考虑 PostgreSQL

计算机架构史上的一次伟大失败,多数人都不知道

滴滴启动美股退市;阿里股价跌回2017年;Linus吐槽桌面版Linux:乱改核心,程序兼容性太糟糕 | Q资讯

这个重要开源项目全靠一位低调的“怪老头”维护!他和比尔盖茨一样撑起了计算机世界

点个在看少个 bug 👇

登录查看更多
0

相关内容

「计算机视觉」2022 年 5 大趋势
专知会员服务
73+阅读 · 2022年3月27日
专知会员服务
44+阅读 · 2021年10月6日
专知会员服务
62+阅读 · 2021年7月6日
专知会员服务
59+阅读 · 2021年5月20日
【NeurIPS 2020】图神经网络GNN架构设计
专知会员服务
83+阅读 · 2020年11月19日
专知会员服务
28+阅读 · 2020年10月24日
最新《可解释机器学习:原理与实践》综述论文,33页pdf
专知会员服务
159+阅读 · 2020年10月10日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
5G边缘计算的价值机遇
专知会员服务
65+阅读 · 2020年8月17日
详解微服务中的三种授权模式
InfoQ
0+阅读 · 2022年1月12日
改善十年应用的部署体验
InfoQ
0+阅读 · 2021年12月27日
FreeWheel 全球范围 Kafka 集群上云实践
InfoQ
0+阅读 · 2021年12月27日
阿里巴巴超大规模Kubernetes基础设施运维体系揭秘
阿里技术
0+阅读 · 2021年12月22日
京东OLAP实践之路
专知
1+阅读 · 2021年5月6日
阿里巴巴全球化架构设计挑战
InfoQ
35+阅读 · 2019年11月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
ResT V2: Simpler, Faster and Stronger
Arxiv
0+阅读 · 2022年4月15日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
「计算机视觉」2022 年 5 大趋势
专知会员服务
73+阅读 · 2022年3月27日
专知会员服务
44+阅读 · 2021年10月6日
专知会员服务
62+阅读 · 2021年7月6日
专知会员服务
59+阅读 · 2021年5月20日
【NeurIPS 2020】图神经网络GNN架构设计
专知会员服务
83+阅读 · 2020年11月19日
专知会员服务
28+阅读 · 2020年10月24日
最新《可解释机器学习:原理与实践》综述论文,33页pdf
专知会员服务
159+阅读 · 2020年10月10日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
5G边缘计算的价值机遇
专知会员服务
65+阅读 · 2020年8月17日
相关资讯
详解微服务中的三种授权模式
InfoQ
0+阅读 · 2022年1月12日
改善十年应用的部署体验
InfoQ
0+阅读 · 2021年12月27日
FreeWheel 全球范围 Kafka 集群上云实践
InfoQ
0+阅读 · 2021年12月27日
阿里巴巴超大规模Kubernetes基础设施运维体系揭秘
阿里技术
0+阅读 · 2021年12月22日
京东OLAP实践之路
专知
1+阅读 · 2021年5月6日
阿里巴巴全球化架构设计挑战
InfoQ
35+阅读 · 2019年11月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
ResT V2: Simpler, Faster and Stronger
Arxiv
0+阅读 · 2022年4月15日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Arxiv
11+阅读 · 2018年9月28日
Top
微信扫码咨询专知VIP会员