重新审视AI创造的就业机会 | 首席人才官

2019 年 5 月 7 日 红杉汇

研究表明,随着人机协作的进步,四种软技能正变得越来越有价值,包括复杂的推理、创造力、社交和情感智能以及感官知觉。人们纷纷通过增强自己的软技能,来抵御被人工智能替代的恐惧。

 

然而,关于机器人、算法和其他越来越智能的技术对于职场人来说究竟是福是祸,恐怕还难下定论。不管是为之欢呼还是瑟瑟发抖,人工智能已经在各行业落地生根,这是不争的事实。与其在不确定性中盲目猜测,迷失方向,倒不如正视眼前在发生的事情——人工智能已经通过创造新的就业机会改变着全球的就业形式。

 

埃森哲的研究人员经过两年半的时间,研究了1500家公司,发现并确定了三个由AI推动的新工作类别。在今天的文章中,参与项目的研究人员H. James Wilson、Paul Daugherty和我们分享了他们对AI创造的新工作角色的理解、帮助员工和企业适应新角色的三个关键,以及AI对全球就业形式的影响。 



我们大约在两年半前开始了这个项目,研究了1500家公司如何使用人工智能,人工智能如何影响他们的业务和员工。结果发现,它肯定会减少一些工作岗位,但会创造更多新的就业机会。

 

我们可以运用自己特有的能力,让人工智能对我们的工作方式、生活方式和总体结果产生积极影响。 


新工作角色的三个类别


一般来说,我们把人工智能创造的新工作角色划分为三个类别:培训者、解释者和支持者。 

 

 培训者

培训者通常在做数据科学工作,投入机器学习工程,积极构建人工智能系统。即使在同一家公司,培训者也可能有很多不同的类型。例如,特斯拉正在招聘具有机器人经验的流水线经理、机器人工程师和计算机视觉研究人员,以及深度学习科学家和机器学习系统专家。

 

团队中的技术专家很重要,但培训者不一定都是技术专家。比如一个具有市场营销背景或运营背景的人,可以与技术专家(如数据科学家)协作,一起识别并解决问题。   

 

其中,有一种特殊工作是人工智能人格培训者,他们对聊天机器人和智能虚拟代理进行行为培训,目前很多公司都有这个岗位。公司可以将这些解决方案运用到与客户交流等方面。这就需要非技术人员与工程师合作,来帮助人工智能塑造合理而周全的行为方式。

 

  解释者

解释者因人工智能被嵌入到非常复杂的系统和业务流程中而产生。所以重点是,解释者既要说明人工智能本身,解释它是如何工作的,还要更泛地去解释正在开发的系统将会产生的各种结果。

 

例如,在谈到自动驾驶时,人们不仅需要知道人工智能的部分,还需了解如环境条件、道路状况等,这样更有利于理解和调整系统,使其更有效地运行;银行和客户服务中心的数据分析师,也要回答客户关于算法决策的问题。 这些就需要解释者发挥作用。

 

一些特定情况下,解释者受监管政策影响很大。据估计,今年大约有75,000个新的解释者的工作机会与GDPR(欧盟的《通用数据保护条例》)有关。

 

解释者不仅连接公司与公众,也经常在公司内部与某些部门打交道。在医疗保健领域的大量案例中,我们看到解释者正在与医疗专业人士分享见解,比如解释为什么人工智能系统会给出特定的建议。

 

▨ 支持者

支持者是管理人工智能的人确保不论技术、数据、形势、业务如何变化,它都能一直运行无误,以获得预期结果。支持者的角色是真正理解结果的人,这些结果需要不断改善以确保其可持续。 

 

他们每天也会花很多时间思考人工智能系统带来的意外后果,以及这些后果最终会如何被公众接受。比如,峰时价格的问题,如何提出一个由算法驱动的、可持续的附加费定价模型?这些显然是Uber和Lyft等公司不得不处理的。再比如,带有偏见的算法、歧视性的面部识别系统,这些可能在刚开始时培训者还没有必要过多考虑,但现在支持者就必须根据情况提出建议,甚至可以在找到正确的解决方法之前,让人工智能系统停止运行。

 

支持者可以从事的岗位有很多。比如,在制造工厂配置、调整机器人以满足供应链和产品动态需求的技术人员,或者无人驾驶汽车后排坐着的安全员。


帮助员工和企业适应新角色的

三个关键


在这个日新月异的世界,我们会看到整个就业市场的发展正在加速。负责发展、管理AI系统的岗位会不断出现,AI会创造新的就业机会,而且还会改变旧的。

 

Facebook给了我们很大的启发,它创造了数以万计的就业机会,让更多人以一种更加负责任的方式,参与到管理算法、实现预期结果的过程中。因为算法并不能管理算法,需要人类来管理算法。

 

AI人才争夺战和大多数人一开始想的有很大的区别,第一,它涉及的范围更广;第二,这些角色的影响会随领域、顾客、制度体制而发生变化。

 

几年前,可能许多处于行业领先位置的AI企业只关注AI培训人员。但现在,他们也正在努力发展解释者、支持者这两种新角色。但我们在研究这些新的工作岗位时,发现企业面临的一个最根本的挑战是很多工作是全新的,没有人接受过类似的培训。如何帮助员工和企业适应这些新角色,通过跟踪调查和分析,我们发现有三件事情是必须做的:

 

更加关注经验学习

使用传统训练方法,一天之内人们就会忘记大约80%的所学内容。那怎么才能让人通过经验来学习呢?实习是一个非常重要的方法,因为在实习过程中可以通过亲身实践、从各个方面来学习。

 

我们曾在一家大型飞机制造厂进行过一次很有意思的培训学习,通过AI和混合现实技术,我们为工人带上特殊的头戴设备,帮助他们了解正在进行的工作、在整个过程中提供指导,让他们更快地完成高技能工作。

 

从个人学习转移到企业培训

每个企业都应把学习看作全新的核心竞争力。终生学习不仅是员工应该追求的,也应当是企业工作的核心。因为,未来根据具体的角色来聘请员工将会变得越来越难,而是要通过培训,让员工更加满足岗位需求。

 

我们曾与一家石油企业合作,研发一种新的钻井技术,使用可视化、AI、游戏等技术为技术人员创造各种钻井方式。在哪里可以请到能够熟练操作游戏和可视化技术的钻井工呢?

 

你要做的不是在市场上寻找具备这些技能的人,而是要培训现有的技术人员,让他们具备这些新的数字技能。这也就是为什么我们认为学习平台对企业来说是非常重要的部分,能够合理运用的企业必将脱颖而出。

 

 降低构建或改进人工智能系统的障碍

推进人工智能民主化能够方便人们成为培训者、解释者和支持者。我们现在已经看到了许多即点即用的人工智能培训工具,但同时也要降低使用这些系统的障碍。

 

从社会和各利益相关方的角度出发,还应该研究如何让可能已经脱离数字世界的弱势群体,也就是没有正确掌握基本技能的人在这个环境下工作。


新工作的全球影响


这些新工作对企业的发展和人们的就业形式将会产生重大影响,必须从更广的范围来观察这一切。

 

在我们的研究中,未来约有10%的工作只有人类才能做,约35%的工作是可自动化的——这部分工作由机器、算法等自动完成,剩下超过一半的工作都是可以扩展的,这意味着自动化可以改进人类的工作方式,但在很大程度上还需要人类来完成。

 

最近七国集团会议的数据表明:由于对人工智能的投资,加拿大预计经济产出将增加160亿美元,并且将有1.6万个新增岗位。我们在世界各地都看到了类似的影响和趋势。

 

一些新的工作岗位将出现,一些旧的将被淘汰,大多数工作将以不同的方式转变,这是整个时代的背景。我们需要做的是,预测到人工智能和其他技术将给工作岗位带来的变化,并且让人们为这些变化做好准备。

 

如果你回顾一下以前的技术浪潮——二三十年前,人们不会预料到会有大量的员工受雇于搜索引擎、网页设计、电子商务、社交媒体等行业。与此类似,我们已经看到AI给就业带来的挑战和机会,我们需要做好准备,并随着时间的推移继续创新,继续探索。


 推荐阅读

面对晋升机会居然想后退?投资个人职业生涯的5种策略 | 首席人才官

要想抢到人才,先打造好你的雇主品牌 | 首席人才官

Facebook高管的成功之“问”| 首席人才官

红杉中国2020校招季首趟列车即刻出发|4w+份简历正在朝你招手!

不设限的人生才值得!|『红杉学者』寻人启事

登录查看更多
0

相关内容

人工智能(Artificial Intelligence, AI )是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支。
AI创新者:破解项目绩效的密码
专知会员服务
34+阅读 · 2020年6月21日
德勤:2020技术趋势报告,120页pdf
专知会员服务
191+阅读 · 2020年3月31日
专知会员服务
125+阅读 · 2020年3月26日
IBM《人工智能白皮书》(2019版),12页PDF,IBM编
专知会员服务
21+阅读 · 2019年11月8日
AI 最大的挑战:也许我们从根上就错了
InfoQ
5+阅读 · 2019年6月14日
人工智能摧毁的不是工作岗位,而是商业模式
数据分析
5+阅读 · 2018年5月13日
半路转型做人工智能,谁说不可行?
AI前线
3+阅读 · 2018年2月28日
面向IT专业人员的8个新兴AI工作
数盟
3+阅读 · 2017年12月17日
已删除
将门创投
6+阅读 · 2017年7月6日
Equalization Loss for Long-Tailed Object Recognition
Arxiv
5+阅读 · 2020年4月14日
Arxiv
6+阅读 · 2020年2月15日
Physical Primitive Decomposition
Arxiv
4+阅读 · 2018年9月13日
Arxiv
3+阅读 · 2018年3月27日
Arxiv
6+阅读 · 2018年1月11日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员