一行代码,Pandas秒变分布式,快速处理TB级数据

2018 年 3 月 7 日 量子位 关注前沿科技
夏乙 发自 凹非寺
量子位 出品 | 公众号 QbitAI

刚刚在Pandas上为十几KB的数据做好了测试写好了处理脚本,上百TB的同类大型数据集摆到了面前。这时候,你可能面临着一个两难的选择:

继续用Pandas?可能会相当慢,上百TB数据不是它的菜。

(ಥ_ಥ) 然而,Spark啊分布式啊什么的,学习曲线好陡峭哦~在Pandas里写的处理脚本都作废了好桑心哦~

别灰心,你可能真的不需要Spark了。

加州大学伯克利分校RiseLab最近在研究的Pandas on Ray,就是为了让Pandas运行得更快,能搞定TB级数据而生的。这个DataFrame库想要满足现有Pandas用户不换API,就提升性能、速度、可扩展性的需求。

研究团队说,只需要替换一行代码,8核机器上的Pandas查询速度就可以提高4倍。

其实也就是用一个API替换了Pandas中的部分函数,这个API基于Ray运行。Ray是伯克利年初推出的分布式AI框架,能用几行代码,将家用电脑上的原型算法转换成适合大规模部署的分布式计算应用。

Pandas on Ray的性能虽说比不上另一个分布式DataFrame库Dask,但更容易上手,用起来和Pandas几乎没有差别。用户不需要懂分布式计算,也不用学一个新的API。

与Dask不同的是,Ray使用了Apache Arrow里的共享内存对象存储,不需要对数据进行序列化和复制,就能跨进程通讯。

 在8核32G内存的AWS m5.2xlarge实例上,Ray、Dask和Pandas读取csv的性能对比

它将Pandas包裹起来并透明地把数据和计算分布出去。用户不需要知道他们的系统或者集群有多少核,也不用指定如何分配数据,可以继续用之前的Pandas notebook。

前面说过,使用Pandas on Ray需要替换一行代码,其实就是换掉导入语句。

# import pandas as pd
import ray.dataframe as pd

这时候你应该看到:

初始化完成,Ray自动识别了你机器上可用的核心,接下来的用法,就和Pandas一样了。

Pandas on Ray目前还处于早期,实现了Pandas的一部分功能。以一个股票波动的数据集为例,它所支持的Pandas功能包括检查数据、查询上涨的天数、按日期索引、按日期查询、查询股票上涨的所有日期等等。

这个项目的最终目标是在Ray上完整实现Pandas API的功能,让用户可以在云上用Pandas。

目前,伯克利RiseLab的研究员们已经用45天时间,实现了Pandas DataFrame API的25%。

革命尚未成功,项目仍在继续。这些人都在为之努力:

Devin Petersohn, Robert Nishihara, Philipp Moritz, Simon Mo, Kunal Gosar, Helen Che, Harikaran Subbaraj, Peter Veerman, Rohan Singh, Joseph Gonzalez, Ion Stoica, Anthony Joseph

更深入地了解Pandas on Ray请看RiseLab博客原文:
https://rise.cs.berkeley.edu/blog/pandas-on-ray/

试用Pandas on Ray请参考这个文档:
https://rise.cs.berkeley.edu/blog/pandas-on-ray/

给Ray团队提要求请到GitHub开issue:
https://github.com/ray-project/ray/issues

如果对Ray感兴趣,可以读一读他们的论文:
https://arxiv.org/abs/1712.05889

加入社群

量子位AI社群15群开始招募啦,欢迎对AI感兴趣的同学,加小助手微信qbitbot6入群;


此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。


进群请加小助手微信号qbitbot6,并务必备注相应群的关键词~通过审核后我们将邀请进群。(专业群审核较严,敬请谅解)

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态


登录查看更多
2

相关内容

【2020新书】实战R语言4,323页pdf
专知会员服务
101+阅读 · 2020年7月1日
干净的数据:数据清洗入门与实践,204页pdf
专知会员服务
162+阅读 · 2020年5月14日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
一文看懂怎么用 Python 做数据分析
大数据技术
24+阅读 · 2019年5月5日
Python奇淫技巧,5个数据可视化工具
机器学习算法与Python学习
7+阅读 · 2019年4月12日
你真的会正确地调试 TensorFlow 代码吗?
数据库开发
7+阅读 · 2019年3月18日
使用 Canal 实现数据异构
性能与架构
20+阅读 · 2019年3月4日
文本分析与可视化
Python程序员
9+阅读 · 2019年2月28日
手把手教你用Python实现自动特征工程
量子位
12+阅读 · 2018年9月3日
五步帮你实现用户画像的数据加工
云栖社区
6+阅读 · 2018年2月4日
【强烈推荐】浅谈将Pytorch模型从CPU转换成GPU
机器学习研究会
7+阅读 · 2017年12月24日
python pandas 数据处理
Python技术博文
4+阅读 · 2017年8月30日
Arxiv
3+阅读 · 2018年6月1日
Arxiv
3+阅读 · 2018年3月2日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关资讯
一文看懂怎么用 Python 做数据分析
大数据技术
24+阅读 · 2019年5月5日
Python奇淫技巧,5个数据可视化工具
机器学习算法与Python学习
7+阅读 · 2019年4月12日
你真的会正确地调试 TensorFlow 代码吗?
数据库开发
7+阅读 · 2019年3月18日
使用 Canal 实现数据异构
性能与架构
20+阅读 · 2019年3月4日
文本分析与可视化
Python程序员
9+阅读 · 2019年2月28日
手把手教你用Python实现自动特征工程
量子位
12+阅读 · 2018年9月3日
五步帮你实现用户画像的数据加工
云栖社区
6+阅读 · 2018年2月4日
【强烈推荐】浅谈将Pytorch模型从CPU转换成GPU
机器学习研究会
7+阅读 · 2017年12月24日
python pandas 数据处理
Python技术博文
4+阅读 · 2017年8月30日
Top
微信扫码咨询专知VIP会员