【NLPCC 2020】Call for Participation: Shared Tasks in NLPCC 2020

2020 年 3 月 12 日 深度学习自然语言处理


发布:NLPCC会议


The 9th CCF International Conference on Natural Language Processing and Chinese Computing (NLPCC2020)

Registration Deadline: May 1st, 2020

http://tcci.ccf.org.cn/conference/2020/


The CCF International Conference on Natural Language Processing and Chinese Computing (NLPCC) is the annual conference of CCF TCCI (Technical Committee of Chinese Information, China Computer Federation). The NLPCC conferences have been successfully held in Beijing (2012),Chongqing (2013), Shenzhen (2014), Nanchang (2015), Kunming (2016), Dalian (2017), Hohhot (2018) and Dunhuang (2019). This year's NLPCC conference will be held in Zhengzhou on October 14-18, 2020.


NLPCC 2020 will follow the NLPCC tradition of holding several shared tasks in natural language processing and Chinese computing. This year’s shared tasks focus on both classical problems and newly emerging problems, including Light Pre-Training Chinese Language Model for NLP Task, Multi-Aspect-based Multi-Sentiment Analysis, and Auto Information Extraction.


Participants from both academia and industry are welcomed. Each group can participate in one or multiple tasks and members in each group can attend the NLPCC conference to present their techniques and results. The participants will be invited to submit papers to the main conference and the accepted papers will appear in the conference proceedings published by Springer LNCS. 


The top 3 participating teams of each task will be certificated by NLPCC and CCF Technical Committee on Chinese Information Technology. If a task has multiple sub-tasks, then only the top 1 participating team of each sub-task will be certificated.


1.  Overview of the Shared Tasks

There are three shared tasks in this year’s NLPCC conference and the detailed description of each task can be found in the task guidelines released. Here we only give a brief overview of each task.


◇ Task 1 - Light Pre-Training Chinese Language Model for NLP Task

The goal of this task is to train a light language model which is still as powerful as the other normal models. Each model will be tested on many different downstream NLP tasks. We would take the number of parameters, accuracy and inference time as the metrics to measure the performance of a model. To meet the challenge of the lack of Chinese corpus, we will provide a big Chinese corpus for this task and will release them for all the researchers later.


Organizer: CLUE benchmark

Contact: CLUEbenchmark@163.com


◇ Task 2 - Multi-Aspect-based Multi-Sentiment Analysis (MAMS)

In existing aspect-based sentiment analysis (ABSA) datasets, most sentences contain only one aspect or multiple aspects with the same sentiment polarity, which may make ABSA task degenerate to sentence-level sentiment analysis. In NLPCC-2020, we manually annotated a large-scale restaurant review corpus for MAMS, in which each sentence contains at least two different aspects with different sentiment polarities. The MAMS task includes two subtasks: (1) aspect term sentiment analysis (ATSA) that aims to identify the sentiment polarity towards the given aspect terms and (2) aspect category sentiment analysis (ACSA) that aims to identify the sentiment polarity towards the pre-specified aspect categories. We will provide train and development sets to participating teams to build their models.


Organizer: Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences and Harbin Institute of Technology (Shenzhen)

Contact: Min Yang (min.yang@siat.ac.cn) and Ruifeng Xu (xuruifeng@hit.edu.cn)


◇ Task 3 - Auto Information Extraction (AutoIE)

Entity extraction is a fundamental problem in language technology. Most previous works focus on the scenario in which labeled data is provided for interested entities. However, the categories of entities can be hierarchical and cannot be enumerated sometimes. Thus, a generic solution cannot depend on the hypothesis that enough labeled data is provided. This task is to build IE systems with Noise and Incomplete annotations. Specifically, given a list of entities of specific type and an unlabeled corpus containing these entities, the task aims to build an IE system which may recognize and extract the interested entities of given types. The task setting is very practical and thus the proposed solutions may generalize well in real-world applications.


Organizer: Zhuiyi Technology and Singapore University of Technology and Design

Contact: Xuefeng Yang (ryan@wezhuiyi.com) and Zhanming Jie (zhanming_jie@mymail.sutd.edu.sg)


2.  How to Participate

◇ Task 1 - Light Pre-Training Chinese Language Model for NLP Task

Registration online with the following steps:

(1.1) Visit www.CLUEbenchmark.com, and click the button 【注册】 at the top right corner of the page. After that, please log in. 

(1.2) After selecting the【NLPCC测评】in the top navigation bar, please register our task in 【比赛注册】.


◇ Task 2 - Multi-Aspect-based Multi-Sentiment Analysis (MAMS)

Please fill out the Shared Task 2 Registration Form (http://tcci.ccf.org.cn/conference/2020/dldoc/NLPCC2020.SharedTask2.RegistrationForm.doc) and send it to the following registration email.

Registration Email: lei.chen@siat.ac.cn


◇ Task 3 - Auto Information Extraction (AutoIE)

Please fill out the Shared Task 3 Registration Form (http://tcci.ccf.org.cn/conference/2020/dldoc/NLPCC2020.SharedTask3.RegistrationForm.doc) and send it to the following registration email.

Registration Email: ryan@wezhuiyi.com


3.  Important dates

2020/03/10:announcement of shared tasks and call for participation;

2020/03/10:registration open;

2020/03/25:release of detailed task guidelines & training data;

2020/05/01:registration deadline;

2020/05/15:release of test data;

2020/05/20:participants’ results submission deadline;

2020/05/30:evaluation results release and call for system reports and conference paper;

2020/06/30:conference paper submission deadline (only for shared tasks);

2020/07/30:conference paper accept/reject notification;

2020/08/10:camera-ready paper submission deadline;


4.  Shared Task Organizers (in alphabetical order)

Yunbo Cao, Tencent

Junyi Li, CLUE benchmark

Minglei Li, Huawei Cloud

Shoushan Li, Soochow University

Liang Xu, CLUE benchmark

Ruifeng Xu, Harbin Institute of Technology (Shenzhen)

Min Yang, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences

Xuefeng Yang, ZhuiYi Technology


For more details, visit NLPCC 2020 Website: http://tcci.ccf.org.cn/conference/2020/

登录查看更多
3

相关内容

CCF自然语言处理与中文计算国际会议(NLPCC)是中国计算机联合会中文信息技术委员会(CCF-TCCI)的年会。NLPCC是一个在自然语言处理(NLP)和中文计算(CC)领域领先的国际会议。它是学术界、工业界和政府的研究人员和实践者分享他们的想法、研究成果和经验,并促进他们在该领域的研究和技术创新的主要论坛。官网链接:http://tcci.ccf.org.cn/conference/2019/
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Arxiv
6+阅读 · 2018年4月21日
Arxiv
4+阅读 · 2018年2月13日
Arxiv
5+阅读 · 2018年1月30日
Arxiv
5+阅读 · 2018年1月23日
Arxiv
9+阅读 · 2016年10月27日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Top
微信扫码咨询专知VIP会员