1.2 Performing AM in Code Space相关代码如下:http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/1.3%20Performing%20AM%20in%20Code%20Space.ipynb
Layer-wise Relevance Propagation 层方向的关联传播,一共有5种可解释方法。Sensitivity Analysis、Simple Taylor Decomposition、Layer-wise Relevance Propagation、Deep Taylor Decomposition、DeepLIFT。它们的处理方法是:先通过敏感性分析引入关联分数的概念,利用简单的Taylor Decomposition探索基本的关联分解,进而建立各种分层的关联传播方法。具体如下:2.1 Sensitivity Analysis相关代码如下:http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/2.1%20Sensitivity%20Analysis.ipynb 2.2 Simple Taylor Decomposition相关代码如下:http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/2.2%20Simple%20Taylor%20Decomposition.ipynb
2.3 Layer-wise Relevance Propagation相关代码如下:http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/2.3%20Layer-wise%20Relevance%20Propagation%20%281%29.ipynb http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/2.3%20Layer-wise%20Relevance%20Propagation%20%282%29.ipynb 2.4 Deep Taylor Decomposition相关代码如下:http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/2.4%20Deep%20Taylor%20Decomposition%20%281%29.ipynb http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/2.4%20Deep%20Taylor%20Decomposition%20%282%29.ipynb
Sections 1.1 ~ 2.2 and 5.1 ~ 5.2 [1] Montavon, G., Samek, W., Müller, K., jun 2017. Methods for Interpreting and Understanding Deep Neural Networks. arXiv preprint arXiv:1706.07979, 2017.Section 1.3 [2] Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J., 2016. Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain. pp. 3387-3395.[3] A. Dosovitskiy and T. Brox. Generating images with perceptual similarity metrics based on deep networks. In NIPS, 2016.Section 2.3[4] Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W., 07 2015. On pixel-wise explanations for non-linear classi er decisions by layer-wise relevance propagation. PLOS ONE 10 (7), 1-46.Section 2.4[5] Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R., 2017. Explaining nonlinear classi cation decisions with deep Taylor decomposition. Pattern Recognition 65, 211-222.Section 2.5 [6] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning Important Features Through Propagating Activation Differences. arXiv preprint arXiv:1704.02685, 2017.Section 3.1[7] Zeiler, M. D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In: Computer Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I. pp. 818-833.Section 3.2 [8] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. In Workshop at International Conference on Learning Representations, 2014.Section 3.3[9] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.Section 3.4[10] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. arXiv preprint arXiv:1703.01365, 2017.Section 3.5[11] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. SmoothGrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.Section 4.1 [12] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929, 2016.Section 4.2 [13] R. R.Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra. Grad-cam: Why did you say that? visual explanations from deep networks via gradient-based localization. arXiv:1611.01646, 2016.Section 4.3[14] A. Chattopadhyay, A. Sarkar, P. Howlader, and V. N. Balasubramanian. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. CoRR, abs/1710.11063, 2017.