Call For Papers# IJCNN2020 Special Session: Method of DRL to AS

2020 年 1 月 2 日 深度强化学习实验室

深度强化学习实验室报道

作者:DeepRL





Aim and Scope

Autonomous systems are an important driver of benefit to many companies and organizations. Advances in autonomous technologies affect every part of life, business, industry and education. A class of machine learning methods, namely reinforcement learning (RL), are the backbone of many autonomous systems. Recent developments in deep learning have been integrated into conventional RL, known as deep RL, for building more capable and robust autonomous systems. These autonomous technologies are transforming many industries, most notable is the car industry where autonomous driving systems will lead to huge transformation in the near future. Other businesses have also applied autonomous technologies to stimulate transformation and growth, from the defense and security industries through to the highly-competitive retail sector, supply chains, manufacturing, medical diagnosis systems, remote aged-care and health-care systems, autonomous surgery, cancer treatment planning, in-house robotics, disaster management and smart-grid control.

This special session aims to bring together the recent developments in the theory and application of deep reinforcement learning and autonomous systems. The topics include, but are not limited to:

  • Advances in deep RL theory

  • Applications of deep RL-based autonomous technologies in:

o   Robotics, surgical robotics, in-house robotics, industrial robots

o   Mutli-agent systems, multi-objective problems

o   Autonomous vehicles, defense technologies, trusted autonomy

o   Smart manufacturing, industrial process, quantum technology

o   Vehicle routing problems, transportation, supply chains

o   Cybersecurity, smart grid control, financial technology

o   IoT applications, mobile edge computing, communication networks

o   Image and video processing, natural language processing

o   Aged-care systems, medical/health-care systems



Important Dates

  • Paper Submission: January 15, 2020

  • Notification of Acceptance: March 15, 2020

  • Camera Ready Deadline: April 15, 2020

  • Conference Dates: July 19-24, 2020

Submission Guidelines

This special session will be held in 2020 International Joint Conference on Neural Networks (IJCNN) (wcci2020.org/ijcnn-sessions/), part of 2020 IEEE World Congress on Computational Intelligence (https://wcci2020.org/ ) (Glasgow, Scotland, United Kingdom, July 19-24, 2020).

All papers should be prepared according to the IJCNN 2020 policy and should be submitted electronically using the conference website (https://wcci2020.org/submissions/) .

To submit your paper to this special session, you will use the IJCNN upload link and choose our SPECIAL SESSION "S52. Methods and Applications of Deep Reinforcement Learning to Autonomous Systems" in the research topic list.

All papers accepted and presented at IEEE IJCNN/WCCI 2020 will be included in the conference proceedings published by IEEE Explore, which are typically indexed by EI.


会议网址(科学上网):

https://sites.google.com/view/thanh-thi-nguyen/ijcnn-2020-special-session


# 往期论文精彩回顾#

第39篇:DQN系列(2): Double DQN 算法原理与实现

第38篇:DQN系列(1): Double Q-learning

第37篇:从Paper到Coding, 一览DRL挑战34类游戏

第36篇:复现"深度强化学习"论文的经验之谈

第35篇:α-Rank算法之DeepMind及Huawei的改进

第34篇:DeepMind-102页深度强化学习PPT(2019)

第33篇:全网首发|| 最全深度强化学习资料(永久更新)

第32篇:腾讯AI Lab强化学习招聘(正式/实习)

第31篇:强化学习,路在何方?

第30篇:强化学习的三种范例

第29篇:框架ES-MAML:进化策略的元学习方法

第28篇:138页“策略优化”PPT--Pieter Abbeel

第27篇:迁移学习在强化学习中的应用及最新进展

第26篇:深入理解Hindsight Experience Replay

第25篇:10项【深度强化学习】赛事汇总

第24篇:DRL实验中到底需要多少个随机种子?

第23篇:142页"ICML会议"强化学习笔记

第22篇:通过深度强化学习实现通用量子控制

第21篇:《深度强化学习》面试题汇总

第20篇:《深度强化学习》招聘汇总(13家企业)

第19篇:解决反馈稀疏问题之HER原理与代码实现

第18篇:"DeepRacer" —顶级深度强化学习挑战赛

第17篇:AI Paper | 几个实用工具推荐

第16篇:AI领域:如何做优秀研究并写高水平论文?

第15篇: DeepMind开源三大新框架!
第14篇: 61篇NIPS2019深度强化学习论文及部分解读
第13篇: OpenSpiel(28种DRL环境+24种DRL算法)
第12篇: 模块化和快速原型设计的Huskarl DRL框架
第11篇: DRL在Unity自行车环境中配置与实践
第10篇: 解读72篇DeepMind深度强化学习论文
第9篇: 《AutoML》:一份自动化调参的指导
第8篇: ReinforceJS库(动态展示DP、TD、DQN)
第7篇: 10年NIPS顶会DRL论文(100多篇)汇总
第6篇: ICML2019-深度强化学习文章汇总
第5篇: 深度强化学习在阿里巴巴的技术演进
第4篇: 深度强化学习十大原则
第3篇: “超参数”自动化设置方法---DeepHyper
第2篇: 深度强化学习的加速方法
第1篇: 深入浅出解读"多巴胺(Dopamine)论文"、环境配置和实例分析


第11期论文:2019-12-19(3篇,一篇OpennAI,一篇Nvidia)

第10期论文:2019-12-13(8篇)

第9期论文:2019-12-3(3篇)

第8期论文:2019-11-18(5篇)

第7期论文:2019-11-15(6篇)

第6期论文:2019-11-08(2篇)

第5期论文:2019-11-07(5篇,一篇DeepMind发表)

第4期论文:2019-11-05(4篇)

第3期论文:2019-11-04(6篇)

第2期论文:2019-11-03(3篇)

第1期论文:2019-11-02(5篇)



登录查看更多
0

相关内容

International Joint Conference on Neural Networks由国际神经网络学会(INNS)与IEEE计算智能学会合作举办,是神经网络及相关领域研究人员和其他专业人员的首次国际会议。该会议将邀请世界知名演讲者就神经网络理论和应用、计算神经科学、机器人学和分布式智能领域进行演讲。除了定期举行口头和海报介绍的技术会议外,会议计划还将包括特别会议、竞赛、辅导和有关当前感兴趣主题的讲习班。官网链接:https://www.ijcnn.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
5+阅读 · 2018年5月22日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
Top
微信扫码咨询专知VIP会员