【WWW2020】可解释人工智能(XAI): 工业界挑战与经验教训,180页ppt

2020 年 4 月 23 日 专知

【导读】国际万维网大会(The Web Conference,简称WWW会议)是由国际万维网会议委员会发起主办的国际顶级学术会议,创办于1994年,每年举办一届,是CCF-A类会议。WWW 2020将于2020年4月20日至4月24日在中国台湾台北举行。本届会议共收到了1129篇长文投稿,录用217篇长文,录用率为19.2%。这周会议已经召开来自美国Linkedin、AWS等几位学者共同给了关于在工业界中可解释人工智能的报告,讲述了XAI概念、方法以及面临的挑战和经验教训。



人工智能在我们的日常生活中扮演着越来越重要的角色。此外,随着基于人工智能的解决方案在招聘、贷款、刑事司法、医疗和教育等领域的普及,人工智能对个人和职业的影响将是深远的。人工智能模型在这些领域所起的主导作用已经导致人们越来越关注这些模型中的潜在偏见,以及对模型透明性和可解释性的需求。此外,模型可解释性是在需要可靠性和安全性的高风险领域(如医疗和自动化交通)以及具有重大经济意义的关键工业应用(如预测维护、自然资源勘探和气候变化建模)中建立信任和采用人工智能系统的先决条件。


因此,人工智能的研究人员和实践者将他们的注意力集中在可解释的人工智能上,以帮助他们更好地信任和理解大规模的模型。研究界面临的挑战包括 (i) 定义模型可解释性,(ii) 为理解模型行为制定可解释性任务,并为这些任务开发解决方案,最后 (iii)设计评估模型在可解释性任务中的性能的措施。


在本教程中,我们将概述AI中的模型解译性和可解释性、关键规则/法律以及作为AI/ML系统的一部分提供可解释性的技术/工具。然后,我们将关注可解释性技术在工业中的应用,在此我们提出了有效使用可解释性技术的实践挑战/指导方针,以及在几个网络规模的机器学习和数据挖掘应用中部署可解释模型的经验教训。我们将介绍不同公司的案例研究,涉及的应用领域包括搜索和推荐系统、销售、贷款和欺诈检测。最后,根据我们在工业界的经验,我们将确定数据挖掘/机器学习社区的开放问题和研究方向


https://sites.google.com/view/www20-explainable-ai-tutorial


目录内容


为什么需要解释性?







什么是可解释人工智能?



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“XAI” 就可以获取可解释人工智能(XAI): 工业界挑战与经验教训,180页ppt》专知下载链接


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
2

相关内容

一个可以解释的AI(Explainable AI, 简称XAI)或透明的AI(Transparent AI),其行为可以被人类容易理解。它与机器学习中“ 黑匣子 ” 的概念形成鲜明对比,这意味着复杂算法运作的“可解释性”,即使他们的设计者也无法解释人工智能为什么会做出具体决定。 XAI可用于实现社会解释的权利。有些人声称透明度很少是免费提供的,并且在人工智能的“智能”和透明度之间经常存在权衡; 随着AI系统内部复杂性的增加,这些权衡预计会变得更大。解释AI决策的技术挑战有时被称为可解释性问题。另一个考虑因素是信息(信息过载),因此,完全透明可能并不总是可行或甚至不需要。提供的信息量应根据利益相关者与智能系统的交互情况而有所不同。 https://www.darpa.mil/program/explainable-artificial-intelligence
【哈佛大学】机器学习的黑盒解释性,52页ppt
专知会员服务
170+阅读 · 2020年5月27日
【WWW2020】DGL深度图神经网络实战教程,PPT+代码
专知会员服务
176+阅读 · 2020年4月12日
【Science最新论文】XAI—可解释人工智能简述,机遇与挑战
专知会员服务
165+阅读 · 2019年12月21日
知识图谱在可解释人工智能中的作用,附81页ppt
专知会员服务
140+阅读 · 2019年11月11日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
22+阅读 · 2018年8月30日
VIP会员
相关论文
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
22+阅读 · 2018年8月30日
Top
微信扫码咨询专知VIP会员