干货|哈工大秦兵教授:机器智能中的文本情感计算

2018 年 8 月 2 日 机器人大讲堂

温馨提示

京东X机器人挑战赛火热招募参赛项目,您的团队或身边有技术相近有意向报名的科研团队和企业,可以转发给他们,感谢大家支持。大赛总奖金高达200万元,其中一等奖50万元。除了赛事奖励,京东还将提供项目孵化基金、就业绿色通道等一系列后续资源。点击以下二维码识别,详情请参看和转发此链接。

 

2018 全球人工智能与机器人峰会(CCF-GAIR)在深圳召开,峰会由中国计算机学会(CCF)主办,雷锋网、香港中文大学(深圳)承办,得到了宝安区政府的大力指导,是国内人工智能和机器人学术界、工业界及投资界三大领域的顶级交流盛会,旨在打造国内人工智能领域最具实力的跨界交流合作平台。

秦兵,女,哈尔滨工业大学计算机学院教授、博士生导师。哈尔滨工业大学社会计算与信息检索中心副主任。中国中文信息学会理事、中国中文信息学会语言与知识计算专委会副主任、社会媒体处理专委会情感分析工作组组长、信息检索专委会常委,国家重点基金项目负责人。在顶级国际会议 ACL、COLING、EMNLP、IEEE TKDE、IEEE TASLP等国内外重要期刊及会议上发表论文60余篇,担任多个会议领域主席以及多个期刊和会议的审稿人。主持多项国家自然科学基金以及国家科技部863项目。同时和多家互联网企业开展合作,多项研究成果进入企业产品。获中文信息学会钱伟长中文信息处理科学技术奖一等奖、黑龙江省技术发明二等奖。


秦兵教授的现场演讲内容雷锋网 AI 科技评论回顾如下。


秦兵:大家上午好!感谢雷锋网和刘挺教授的邀请,今天我报告的题目是:机器智能中的文本情感。

大家也知道,人工智能目前已进入迅猛发展阶段,总体可以分为三个阶段,第一个阶段是计算智能的阶段,这个阶段计算机和人类相比是能存会算,它的超大存储量、超高计算速度,这方面完胜人类。第二个阶段是感知智能,以语音识别、图像识别为代表的技术迅猛发展。大家也看过很多电视节目,包括“机智过人”、“最强大脑”;人和机器比图象识别,机器已经可以和人类相媲美甚至在某些方面超过人类。第三个阶段是认知智能,这个阶段需要机器能够思考,能够具有情感,这个阶段考验的是智能是否有情商,也就是说情感在人工智能认知阶段还是非常重要的。


何为情感?严格定义来讲就是情感是人对客观事物是否满足自己需要而产生的态度体验。机器对于情感的要求就是机器情感计算,也就是机器理解人类的情感和生成情感的能力。所以赋予计算机情感计算能力的研究引起了学术界和企业界的广泛关注。很多人都看过电影《她》,人机恋爱出现在科幻电影中,未来也许会出现在我们的生活当中。

机器情感怎么获得?怎么和人进行交流?它首先要获取人类的情感资源,比如它要去了解或学习如何识别情感、产生情感。今天的报告主要从情感计算的六个维度来讲:

情感分类


首先从情感分类的角度出发,比如说人类的情感是多样性的,我们经常能想起来的词或者看到的词,比如喜极而泣、抱头痛哭、捶胸顿足、七情六欲、五味杂陈等等,表达了我们的喜怒哀乐。实际上多年来也有很多人在这方面做了很多研究,比如七情六欲分为好、恶、乐、怒、哀、惧、欲等。此外,还有人从高兴、悲伤、愤怒、恐惧、厌恶、惊奇等进行分类。

对于情感分类,一般来讲有粗粒度情感分类,粗粒度情感分类主要用来判断文本整体情感倾向,表明一个人对某件事或对某个物体的整体评价。情感计算中大多采用两种,一种是倾向性分类,即褒、贬、中的分类,还有一种是微博中经常出现的情绪分类,表示个人主观情绪的喜、怒、悲、恐、惊。

有了这么多类别体系,又有倾向性分类或情绪分类,分别针对我们对不同的产品、不同的服务,甚至表达的是我们个人的不同情感,无论它怎么划分或者划分的颗粒度有多细,总体来讲它是一个分类任务,也就是说传统的文本分类任务适用于情感分类,文本的情感分类可以看成是一种特殊的文本分类任务。那么传统文本分类是通过训练样本、特征提取+机器学习模型,训练好参数,对未知样本进行分类预测。对于情感分类,考虑到特定的情感资源,相对于传统文本分类,有了更多可利用的知识。


当然,这种分类任务要结合文本当中不同的评价对象,所以面向评价对象的情感分类有很多种方法,比较典型的可以利用上下文信息,采用神经网络中的注意力机制,使某个评价对象和词语能更好地寻找到搭配,从而来判断。我们在 EMNLP2016 上发表的一篇论文就介绍了我们的成果。

面向评价对象的情感分类,可以落地很多应用,比如现在网络上有很多文本,海量的评论,比如评论手机,具体来讲是华为手机,我们在评论时按照细粒度分类,可以把评价对象、评价词、属性抽取出来,进一步构建出评价手机体系的维度空间,也就是说你可能事先对某一个产品或某一个分类不知道从哪些角度去了解它,或者从哪些维度去分析它,但我们可以通过细粒度情感分类把这个体系归纳出来,同时对每一个粒度进行打分,比如图中红色和蓝色的区别就是褒贬,颜色的不同表示它们打分值,这样用户可以在购买时进行评价,比如华为手机、苹果手机或其他类型的手机。


粗粒度情感分类是为商家了解用户对产品的评论,政府了解公众舆情提供参考。细粒度情感分类可以提供所评价的产品或服务的精准画像,为商家和用户提供不同的评估。


隐式情感


无论是你听别人的话,还是自己表达情感时,可能未必会使用情感词。情感表达中有20%-30%是没有情感词的,它属于隐式情感,而隐式情感多使用事实型陈述和语言修辞表达,从隐式情感分布来讲,有事实型,有比喻型,有反问型,其中事实型情感占72%。采用事实型情感,比如一个人住到酒店,他在发微博时说“桌子上有一层灰”,这没有任何情感词,但实际上已经表达了他的不满,这就是事实型表述。再看褒义描述,“从下单到收到货不到24小时”,表明他称赞快递速度很快,但没有明显的表达词,这些都属于事实型表述。

这种事实型描述怎么挖掘?这种事实型表述出现很频繁,这个时候我们可以采用上下文,比如我说“桌子上有一层灰,很不高兴”,就可以把“桌子上有一层灰”定义为贬义的。或者找不到上下文的话,也可以在其他文当中找到跟它相似的语句,再判定情感,通过借助周围上下文的分析进行推理,得到这句话的情感,这是一种解决策略。同时,我们也可以借助某种知识,比如快递多长时间算快,或者说这个人身高1.8米,我们有个常识,一米几以上就算高个儿,类似这样的知识可以帮助我们进行隐式情感分析。


情感溯因

分析情感的目的是什么?这些情感产生的原因又是什么?比如他是因为什么高兴、因为什么伤心、因为什么愤怒,我们需要情感溯因,也为了大家更好地观察产品、体会服务以及体察对方的情感。从原因来看,一般是“情”出有因,这里有一个例子看着懂事的女儿每天被病痛折磨着,自己却不能为她捐肾,想到自己无能为力,张志英泣不成声”。我们可以进行溯因,也就是要知其然,也要知其所以然,知道了原因之后,比如你知道一个人有洁癖,忍受不了桌子上有一层灰,下次她再看到一个地方的桌子上有一层灰,可能她没有表达出来,但你能预期到她会生气。


文本情感的原因发现方法,比如哈工大深圳研究院的徐睿峰老师做过一些工作,也有语料库,一般是按照类似问答系统研究的方式,这里面有情感词、有原文,通过记忆网络判别这个文章中哪句话是原因,通过类别判断是或不是。

个性化


通过进一步分析我们可以知道人和人是不同的,同一对象,不同人立场不同,可能表达出不同情感;相同对象,不同人表达相同情感,用词风格不同。比如男生和女生对待某一件事的时候可能分歧很大,所以在情感计算中要加入用户特征,比如用户画像技术,这里面包括自然属性、社会属性、兴趣属性、心理属性等。


一般立场不同,情感可能会不同,比如去年广为人知的“青岛38元大虾”和“哈尔滨天价鱼”事件,关于青岛38元大虾,“在南方的东北妹子”评价说“米饭按粒卖,我不得不倾家荡产么!”关于哈尔滨天价鱼中的评价是“北方人觉得南方小小气气,南方人觉得北方人没素质”。此外,人们的用词风格也会不同,这里有两个人,一个人很容易用非常夸张的词,比如“这个车太漂亮了”,另一个人会说“还行吧”,他所说的“还行吧”对他来讲就是很好了。我们用两个人发表的文章进行对比,不同的人发表的文章在情感分值差异性上会有不同,用词风格也如此,同一篇文档,比如这个人发表的文档相似度很高,他评价车、评价服装时都会使用很夸张的词。如果跟另外一个人来比较,文章用词的相似度就很低。


我们在神经网络分类中融入用户和产品的向量和矩阵表示信息,然后把它融入已有神经网络框架,应用到文本情感分类任务,这一部分内容的论文发表在 2015 年的 ACL 上。


领域问题


我们在不同的领域都存在迁移的问题,以图书和电子领域为例,每个领域的评价对象都不同,不同领域的评价表达千差万别,不同领域中的同一情感表达极性不同。比如“简单”这一词,情节简单和上手简单表达的情感就不一样。这需要我们进行跨领域的情感研究,也就是进行模型迁移过程,通常在情感分析领域的迁移,一是利用领域无关的词和领域相关词的链接关系,再进行分别聚类。在神经网络当中,通过神经网络的隐层参数尽量提取与情感相关、但与领域无关的词的特征来分类。


情感生成


实际上我们一直分析的是人类的情感,我们一直很期待机器是不是能产生情感,也就是说机器有情感吗?有三观吗?目前机器是没有自主意识的,而指定情感类别的情感生成可以做到,比如说我们可以根据指定的情感类别生成情感表达,也可以在聊天机器人当中根据转移概率进行变换,此外也可以对情感表达进行润色和风格转换。

此外,我们可以进行文本的情感极性变换及润色,比如原句是“服务不周,而且极其粗鲁”,可以修改为“服务到位,而且非常清爽”。还可以进行文章的润色,比如“两只狗在树边玩耍”,我们可以把它修改为“两只狗在树边玩耍,享受童年的快乐”。

情感文本生成迈出机器发出情感的第一步,在聊天系统中可以进行情感互动,自动生成评论文本可以丰富用户的表达方式,比如一个人不善表达,但他对这个东西打分非常好,我们可以帮助他生成一段文字,丰富他的表达方式。


总的来讲,情感分析已经发展了很多年,已经落地产生了很多应用,产生巨大价值,比如在社会舆情方面、电子商务方面,如大家经常看到的淘宝网等等,再比如在传统行业方面,比如帮助ZARA进行服装设计改进,此外在金融等特定领域都发挥了巨大的作用,这是一个很接地气的方向,同时也具有很多技术挑战。

我们来看一下能否进行诗词鉴赏。例如一个高考题目,关于一首杜甫的诗,“韦曲花无赖,家家恼煞人”,描写春色的美。“绿樽须尽日,白发好禁春”是说在这样的日子需要喝酒,需要好好享受春天的气息。“石角钩衣破,藤梢刺眼新”描述他已经不顾衣服被石角钩破,欣赏藤梢冒出的新芽。“何时占丛竹,头戴小乌巾”表达什么时候能头戴小乌巾归隐山林。问题是谈谈诗的最后两句表达了诗人怎样的思想感情。参考答案是对于春色的描述表达出作者的喜爱之情,因此产生对归隐山林的隐士生活的向往。情感分析中用了很多其他技术,包括古诗词、隐喻等等,能表达情感和背后隐藏的归隐山林的心情,什么时候·机器的情感分析也能进一步分析出这种情感,同时又能像刚才孙茂松老师介绍的古诗词一样,能够生成带有指定情感的古诗词也是情感分析未来需要探索的。


最后总结一下。情感是人类的高级思维方式;机器可以通过学习理解人类的情感模式,了解人类的情感;情感溯因可以帮助更深入理解人类情感动机;机器可以借助指定情感类别方式生成情感文本;鉴赏类或文学作品赏析情感计算值得我们继续探索。真正具有自主意识的情感智能还未到来。谢谢大家!

☞文章来源:雷锋网 


推荐阅读
访问访谈

工程院院士 蔡鹤皋北航教授 文力丨深醒科技 袁培江深之篮 魏建仓丨 大然科技  张春松

企业报道

一飞智控丨深醒科技发那科柔宇科技优傲机器人宇树科技臻迪科技iRobot

前沿技术

①工业  缝纫机器人无人智能采矿机器人中国饺子生产线自动化车间MIT 建筑机器人 

②服务  索尼机器狗 Aibos叠衣机器人 FoldiMate日本 骑自行车机器人有触觉机械手 LUKE达芬奇机器人机器人乐队空中飞车日本护理机器人合集

③特种  丰田人形机器人水下机器人 探索号丨俄罗斯人形机器人 FEDOR美国重型机械 Guardian GT丨波士顿动Atlas 360度后空翻中国四足机器人 Laikago丨北理工 四轮足机器人佛罗里达研究院 “机械鸵鸟|大然  变胞机器人

④仿生  3D打印 仿生机器人 东京大学 流汗人形机器人柔性电池哈佛 柔软肌肉哈佛 RoboBee

往期讲座

英特尔 宋继强博士 | 中民国际 刘国清陈小平教授 |驭势科技 姜岩浙大 熊蓉教授|长江学者 孙立宁上海大学 无人艇专家团|新松总裁 曲道奎北航 王田苗教授|863专家 李铁军教授北邮 刘伟教授|清华 邓志东教授清华 孙富春教授|天津大学博导 齐俊桐哈工大 杜志江教授|长江学者 王树新甘中学教授 | 硅谷创客 赵胜

温馨提示

意向合作,文章转载, 均可联系堂博士

商务合作:13810423387(同微信)

内容合作:15611695072(同微信)


登录查看更多
5

相关内容

情感分类是对带有感情色彩的主观性文本进行分析、推理的过程,即分析对说话人的态度,倾向正面,还是反面。它与传统的文本主题分类又不相同,传统主题分类是分析文本讨论的客观内容,而情感分类是要从文本中得到它是否支持某种观点的信息。
2019中国硬科技发展白皮书 193页
专知会员服务
83+阅读 · 2019年12月13日
【CAAI 2019】自然语言与理解,苏州大学| 周国栋教授
专知会员服务
63+阅读 · 2019年12月1日
【CCL 2019】刘康、韩先培:做失败科研的10个方法
专知会员服务
28+阅读 · 2019年11月12日
CCAI 2019|视觉语音语言多模态论坛嘉宾介绍
中国人工智能学会
12+阅读 · 2019年9月3日
CCF@U: 刘挺、秦兵走进天津大学
中国计算机学会
4+阅读 · 2018年11月20日
哈工大刘挺教授:中文信息处理前沿技术进展
哈工大SCIR
10+阅读 · 2018年11月8日
中科院赵军:开放域事件抽取 | CCF-GAIR 2018
AI科技评论
25+阅读 · 2018年7月20日
张钹院士:走向真正的人工智能(附报告全文)
走向智能论坛
13+阅读 · 2018年7月1日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Arxiv
6+阅读 · 2018年11月1日
Arxiv
4+阅读 · 2018年9月6日
Arxiv
6+阅读 · 2018年3月27日
Arxiv
10+阅读 · 2018年3月22日
Arxiv
3+阅读 · 2017年12月18日
VIP会员
相关资讯
CCAI 2019|视觉语音语言多模态论坛嘉宾介绍
中国人工智能学会
12+阅读 · 2019年9月3日
CCF@U: 刘挺、秦兵走进天津大学
中国计算机学会
4+阅读 · 2018年11月20日
哈工大刘挺教授:中文信息处理前沿技术进展
哈工大SCIR
10+阅读 · 2018年11月8日
中科院赵军:开放域事件抽取 | CCF-GAIR 2018
AI科技评论
25+阅读 · 2018年7月20日
张钹院士:走向真正的人工智能(附报告全文)
走向智能论坛
13+阅读 · 2018年7月1日
相关论文
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Arxiv
6+阅读 · 2018年11月1日
Arxiv
4+阅读 · 2018年9月6日
Arxiv
6+阅读 · 2018年3月27日
Arxiv
10+阅读 · 2018年3月22日
Arxiv
3+阅读 · 2017年12月18日
Top
微信扫码咨询专知VIP会员