可微分的「OpenCV」:这是基于PyTorch的可微计算机视觉库

2019 年 10 月 3 日 机器之心

机器之心整理

参与:思

如何打造一个可微分的 OpenCV?如何将图像处理嵌入到训练流程中?你需要 Kornia 这个开源可微的计算机视觉库。


  • 项目地址:https://github.com/arraiyopensource/kornia


目前最经典的图像处理库差不多就是 OpenCV 了,它从最经典的图像算法到非常前沿的 DL 预训练模型囊括了 CV 的很多方面。 但现在有一个问题,OpenCV 是不可微的,这意味着它更多的是做预处理等工作,而不能嵌入到整个训练流程中。


在这个项目中,开发者提出了一种新型开源可微分计算机视觉库 Kornia,并且它建立在 PyTorch 之上。


Kornia 包含了一组例程和可微分模块,并致力于解决通用计算机视觉问题。 在 Kornia 的核心代码中,它使用 PyTorch 作为主要后端,并高效地利用反向模式自动微分机制来定义并计算复杂函数的梯度。 如下所示为 Kornia 可微分处理的一个示例:



受到 OpenCV 的启发,Kornia 由包含各种运算子的子集包组成,这些运算子可以插入到神经网络中,以在训练中执行图像转换、对极几何、深度估计和各种底层图像处理,例如直接在张量上进行滤波和边缘检测等操作。


从比较高的层次上来说,Kornia 库主要包含以下组件:


使用入门


Kornia 使用起来非常简单,它的 API 就可以直接当做算子进行操作,更多的 API 文档或教程可以查阅使用指南。


  • 文档地址:https://kornia.readthedocs.io/en/latest/


import torch
import kornia

x_rad = kornia.pi * torch.rand(133)
x_deg = kornia.rad2deg(x_rad)

# True
torch.allclose(x_rad, kornia.deg2rad(x_deg))

使用案例


项目还提供了很多 Jupyter Notebook,它们展示了使用 Kornia 的各种实例。 在这里我们简要介绍了如何使用 Kornia 抽取图像特征。 首先得读取并打印图像,这一点和 OpenCV 或其它图像处理库都差不多:



因为这个示例展示的是经典图像处理方法,后面就需要加载预定义的检测特征:



后面就可以根据特征抽取一些图像块,并准备做后续的处理了。



最后,前面根据特征抽取的 2000 个图像块可以进一步采用 SIFT 方法构建描述向量。




文为机器之心整理,转载请联系本公众号获得授权
✄------------------------------------------------
加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com
投稿或寻求报道:content@jiqizhixin.com
广告 & 商务合作:bd@jiqizhixin.com
登录查看更多
0

相关内容

一个跨平台的计算机视觉处理库,全称是Open Source Computer Vision。
最新《自动微分手册》77页pdf
专知会员服务
100+阅读 · 2020年6月6日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
Yann Lecun 纽约大学《深度学习(PyTorch)》课程(2020)PPT
专知会员服务
179+阅读 · 2020年3月16日
《深度学习》圣经花书的数学推导、原理与Python代码实现
KGCN:使用TensorFlow进行知识图谱的机器学习
专知会员服务
81+阅读 · 2020年1月13日
教程 | PyTorch经验指南:技巧与陷阱
机器之心
15+阅读 · 2018年7月30日
从基础概念到实现,小白如何快速入门PyTorch
机器之心
13+阅读 · 2018年2月26日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
5+阅读 · 2018年2月26日
Arxiv
7+阅读 · 2018年1月24日
VIP会员
相关VIP内容
相关资讯
Top
微信扫码咨询专知VIP会员