大数据分析流程大致分为数据准备、数据合并、数据降维等。在数据准备阶段,数据科学家需要先下载数据,然后还要进行数据抽取、数据转换、数据加载等,而且一般情况下数据包都非常大,所以数据科学家大部分时间是在等待数据准备好,因此有人戏称,数据科学家不是在喝咖啡就是在去喝咖啡的路上。随着数据量越来越大,数据科学家处理数据所需时间也越来越长,导致工作效率非常低。
在今年GTC Europe大会上,NVIDIA发布了一款针对数据科学和机器学习的GPU加速平台RAPIDS,该平台构建于Apache Arrow、PANDAS和SKLEARN等组件之上,通过CUDF数据过滤、CUML机器学习、CUGRAPH数据图像化来加速处理数据,为数据科学家提供标准化的流水线式工具,数据处理速度较仅用CPU提升50倍,大大提高了数据科学家的工作效率。
12月27日晚8点,超级公开课NVIDIA专场第17讲将开讲,由NVIDIA解决方案架构师孙鹏主讲,主题为《开源软件平台RAPIDS如何加速数据科学》。
★
课程信息
时间:12月27日20点
地点:「高性能计算」社群
讲师介绍
孙鹏,NVIDIA解决方案架构师,中国科学院大连化学物理研究所物理化学博士。博士期间从事分子反应动力学理论研究,负责组内GPU程序开发,参与国内RAPIDS首批用户测试工作。
课程详情
主题:开源软件平台RAPIDS如何加速数据科学
提纲:
1.数据科学面临的挑战
2.开源软件平台RAPIDS架构解读
3.RAPIDS安装及使用方法
4.XGBoost算法简介
5.RAPIDS应用案例分享
入群路径
本次课程我们将设置主讲群,讲师将亲自入群交流。希望进入主讲群与老师认识和交流的朋友,可扫描海报上的二维码添加智东西公开课联络员“动动(zhidxzb)”为好友,添加时请备注“姓名-公司-职位或姓名-学校-专业”,申请进入主讲群。
快速通道
扫描下方二维码,直接填写听课申请表,即可获取听课名额。我们将尽快与您联系。