最全技术图谱!一文掌握人工智能各大分支技术

2017 年 7 月 13 日 CSDN大数据

作者 | Stefan Kojouharov 

编译 | 聂震坤


在过去的几个月中,我一直在收集有关人工智能的相关资料。随着各种的问题被越来越频繁的提及,我决定整理并分享有关人工智能、神经网络、机器学习、深度学习与大数据的技术合辑。同时为了内容更加生动易懂,本文将会针对各个大类展开详细解析。

经网络



机器学习


机器学习: Scikit-learn 算法

此部分内容可以帮助你解决机器学习中最难的部分,即找到正确的估计器(Estimator)。下图可帮助快速查找文档与简介,更快了解问题并找到解决方法。


Scikit-Learn

Scikit-learn(更正式的叫法为 scikits.learn)是 Python 的一个用于机器学习的免费库。库中有大量的分类,回归与聚类算法,并支持向量机、随机森林、梯度提升、 K 均值与 DBSCAN。 旨在与 Python 数字库 NumPy 和科学库 SciPy 进行交互。


机器学习:算法

此部分旨在介绍如何根据预测分析方案选择合适的机器学习算法。下图可以根据数据性质提出最佳算法。


用于数据科学的 Python



TensorFlow

谷歌于 2017 年 5 月宣布了第二代 TPU 并在谷歌计算引擎中加入了对 TPU 的支持。第二代 TPU 拥有高达 180 万亿次浮点运算性能(180 teraflops)。当 64 个 TPU 组合在一起时,可以提供高达 11.5 千万亿次浮点运算性能(11.5 petaflops)。


Keras

2017 年,谷歌在 TensorFlow 的核心库中加入了对 Keras 的支持。有学者认为,认为相较于端到端的机器学习框架,Keras 更适合作为接口来使用。它提供了更高级别,更直观的抽象集合,使得无论后端科学计算库如何,都可以轻松配置神经网络。


Numpy

NumPy 是针对 Python 的 CPython 参考实现,是一个非优化的字节码解释器。针对目前版本的Python编写数学算法的运行速度相对较慢的问题,Numpy 使用多维数组和函数与运算符来改写部分代码来提高运行效率。


Pandas

名称 “Pandas” 源于“面板数据”(Panel Data)一词,是多维结构化数据集的计量经济学术语。


数据预处理

数据预处理一词已经开始渗透进流行文化中。在2017年电影“金刚:骷髅岛”中,演员马克·埃文·杰克逊(Marc Evan Jackson)饰演的角色为“我们的数据处理者–史蒂夫·伍德沃德。



用 Dplyr 与 Tidyr 进行数据预处理



SciPy

SciPy 是基于 NumPy 数组对象进行构建,为 NumPy 堆栈的一部分。包括 Matplotlib,pandas 和 SymPy 等工具,以及扩展的科学计算库集。该 NumPy 堆栈与其他应用程序(如MATLAB,GNU Octave 和 Scilab)具有类似的使用者。 NumPy 堆栈有时也被称为 SciPy 堆栈。


Matplotlib

Matplotlib 是 Python 编程语言及其数学数学扩展 NumPy 的绘图库。它提供了面向对象的API,用于使用 Tkinter,wxPython,Qt 或 GTK +等通用 GUI 工具包将图形嵌入到应用程序中。还有一个基于状态机(如 OpenGL)的程序 “pylab” 接口。接口类似 MATLAB,但不鼓励使用。

Pyplot 是一个 matplotlib 模块,他提供了一个类似 MATLAB 的界面。Pyplot 拥有跟MATLAB 一样易上手,兼容 Pyhton 并且免费的优点。


数据可视化



PySpark

原文:Cheat Sheets for AI, Neural Networks, Machine Learning, Deep Learning & Big Data 

审校:屠敏

登录查看更多
5

相关内容

Scikit-learn项目最早由数据科学家David Cournapeau 在2007 年发起,需要NumPy和SciPy等其他包的支持,是Python语言中专门针对机器学习应用而发展起来的一款开源框架。
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
266+阅读 · 2020年6月10日
【实用书】Python技术手册,第三版767页pdf
专知会员服务
234+阅读 · 2020年5月21日
【天津大学】知识图谱划分算法研究综述
专知会员服务
108+阅读 · 2020年4月27日
【哈佛《CS50 Python人工智能入门》课程 (2020)】
专知会员服务
111+阅读 · 2020年4月12日
学习自然语言处理路线图
专知会员服务
137+阅读 · 2019年9月24日
深度学习技术发展趋势浅析
人工智能学家
27+阅读 · 2019年4月11日
福利 | 当Python遇上大数据与机器学习,入门so easy!
限时领取|45讲人工智能与python入门课程
数据挖掘入门与实战
5+阅读 · 2018年2月4日
28 款 GitHub 最流行的开源机器学习项目(附地址)
七月在线实验室
4+阅读 · 2017年12月18日
学习人工智能需要哪些必备的数学基础?
入门人工智能该读哪些书?
InfoQ
3+阅读 · 2017年12月4日
干货|7步掌握基于Keras的深度学习!
全球人工智能
4+阅读 · 2017年11月14日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
Arxiv
102+阅读 · 2020年3月4日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
266+阅读 · 2020年6月10日
【实用书】Python技术手册,第三版767页pdf
专知会员服务
234+阅读 · 2020年5月21日
【天津大学】知识图谱划分算法研究综述
专知会员服务
108+阅读 · 2020年4月27日
【哈佛《CS50 Python人工智能入门》课程 (2020)】
专知会员服务
111+阅读 · 2020年4月12日
学习自然语言处理路线图
专知会员服务
137+阅读 · 2019年9月24日
相关资讯
深度学习技术发展趋势浅析
人工智能学家
27+阅读 · 2019年4月11日
福利 | 当Python遇上大数据与机器学习,入门so easy!
限时领取|45讲人工智能与python入门课程
数据挖掘入门与实战
5+阅读 · 2018年2月4日
28 款 GitHub 最流行的开源机器学习项目(附地址)
七月在线实验室
4+阅读 · 2017年12月18日
学习人工智能需要哪些必备的数学基础?
入门人工智能该读哪些书?
InfoQ
3+阅读 · 2017年12月4日
干货|7步掌握基于Keras的深度学习!
全球人工智能
4+阅读 · 2017年11月14日
相关论文
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
Arxiv
102+阅读 · 2020年3月4日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Arxiv
6+阅读 · 2018年3月28日
Top
微信扫码咨询专知VIP会员