比用Pytorch框架快200倍!0.76秒后,笔记本上的CNN就搞定了MNIST | 开源

2021 年 8 月 12 日 量子位
博雯 发自 凹非寺
量子位 报道 | 公众号 QbitAI

在MNIST上进行训练,可以说是计算机视觉里的“Hello World”任务了。

而如果使用PyTorch的标准代码训练CNN,一般需要3分钟左右。

但现在,在一台笔记本电脑上就能将时间缩短200多倍。

速度直达0.76秒

那么,到底是如何仅在一次epoch的训练中就达到99%的准确率的呢?

八步提速200倍

这是一台装有GeForce GTX 1660 Ti GPU的笔记本。

我们需要的还有Python3.x和Pytorch 1.8。

先下载数据集进行训练,每次运行训练14个epoch。

这时两次运行的平均准确率在测试集上为99.185%,平均运行时间为2min 52s ± 38.1ms。

接下来,就是一步一步来减少训练时间:

一、提前停止训练

在经历3到5个epoch,测试准确率达到99%时就提前停止训练。

这时的训练时间就减少了1/3左右,达到了57.4s±6.85s。

二、缩小网络规模,采用正则化的技巧来加快收敛速度

具体的,在第一个conv层之后添加一个2x2的最大采样层(max pool layer),将全连接层的参数减少4倍以上。

然后再将2个dropout层删掉一个。

这样,需要收敛的epoch数就降到了3个以下,训练时间也减少到30.3s±5.28s。

三、优化数据加载

使用data_loader.save_data(),将整个数据集以之前的处理方式保存到磁盘的一个pytorch数组中。

也就是不再一次一次地从磁盘上读取数据,而是将整个数据集一次性加载并保存到GPU内存中。

这时,我们只需要一次epoch,就能将平均训练时间下降到7.31s ± 1.36s。

四、增加Batch Size

将Batch Size从64增加到128,平均训练时间减少到4.66s ± 583ms。

五、提高学习率

使用Superconvergence来代替指数衰减。

在训练开始时学习率为0,到中期线性地最高值(4.0),再慢慢地降到0。

这使得我们的训练时间下降到3.14s±4.72ms。

六、再次增加Batch Size、缩小缩小网络规模

重复第二步,将Batch Size增加到256。

重复第四步,去掉剩余的dropout层,并通过减少卷积层的宽度来进行补偿。

最终将平均时间降到1.74s±18.3ms。

七、最后的微调

首先,将最大采样层移到线性整流函数(ReLU)激活之前。

然后,将卷积核大小从3增加到5.

最后进行超参数调整:

使学习率为0.01(默认为0.001),beta1为0.7(默认为0.9),bata2为0.9(默认为0.999)。

到这时,我们的训练已经减少到一个epoch,在762ms±24.9ms的时间内达到了99.04%的准确率。

“这只是一个Hello World案例”

对于这最后的结果,有人觉得司空见惯:

优化数据加载时间,缩小模型尺寸,使用ADAM而不是SGD等等,都是常识性的事情。

我想没有人会真的费心去加速运行MNIST,因为这是机器学习中的“Hello World”,重点只是像你展示最小的关键值,让你熟悉这个框架——事实上3分钟也并不长吧。

而也有网友觉得,大多数人的工作都不在像是MNIST这样的超级集群上。因此他表示:

我所希望的是工作更多地集中在真正最小化训练时间方面。

GitHub:
https://github.com/tuomaso/train_mnist_fast

参考链接:
[1]https://www.reddit.com/r/MachineLearning/comments/p1168k/p_training_cnn_to_99_on_mnist_in_less_than_1/

本文系网易新闻•网易号特色内容激励计划签约账号【量子位】原创内容,未经账号授权,禁止随意转载。

「智能汽车」交流群招募中!

欢迎关注智能汽车、自动驾驶的小伙伴们加入社群,与行业大咖交流、切磋,不错过智能汽车行业发展&技术进展。加好友请务必备注您的姓名-公司-职位哦~



点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见~


登录查看更多
0

相关内容

MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据。
专知会员服务
22+阅读 · 2021年7月15日
专知会员服务
52+阅读 · 2021年6月17日
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
25+阅读 · 2020年5月7日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
129+阅读 · 2020年3月15日
TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
专知会员服务
69+阅读 · 2020年1月17日
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
163+阅读 · 2019年10月28日
TensorFlow与PyTorch之争,哪个框架最适合深度学习
Python开发者
5+阅读 · 2019年9月18日
初学者的 Keras:实现卷积神经网络
Python程序员
24+阅读 · 2019年9月8日
你有哪些深度学习(rnn、cnn)调参的经验?
七月在线实验室
10+阅读 · 2019年3月27日
【干货】使用Pytorch实现卷积神经网络
专知
13+阅读 · 2018年5月12日
从零开始PyTorch项目:YOLO v3目标检测实现
机器之心
14+阅读 · 2018年4月23日
基于Numpy实现神经网络:dropout
论智
4+阅读 · 2018年4月13日
测试对比TensorFlow、MXNet、CNTK、Theano四个框架
炼数成金订阅号
3+阅读 · 2017年9月18日
Arxiv
3+阅读 · 2019年4月7日
Arxiv
7+阅读 · 2018年1月24日
VIP会员
相关VIP内容
专知会员服务
22+阅读 · 2021年7月15日
专知会员服务
52+阅读 · 2021年6月17日
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
25+阅读 · 2020年5月7日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
129+阅读 · 2020年3月15日
TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
专知会员服务
69+阅读 · 2020年1月17日
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
163+阅读 · 2019年10月28日
相关资讯
TensorFlow与PyTorch之争,哪个框架最适合深度学习
Python开发者
5+阅读 · 2019年9月18日
初学者的 Keras:实现卷积神经网络
Python程序员
24+阅读 · 2019年9月8日
你有哪些深度学习(rnn、cnn)调参的经验?
七月在线实验室
10+阅读 · 2019年3月27日
【干货】使用Pytorch实现卷积神经网络
专知
13+阅读 · 2018年5月12日
从零开始PyTorch项目:YOLO v3目标检测实现
机器之心
14+阅读 · 2018年4月23日
基于Numpy实现神经网络:dropout
论智
4+阅读 · 2018年4月13日
测试对比TensorFlow、MXNet、CNTK、Theano四个框架
炼数成金订阅号
3+阅读 · 2017年9月18日
Top
微信扫码咨询专知VIP会员