PAKDD 2019 PPT 资源下载 | 主讲嘉宾 Jennifer Neville 教授演讲分享

2019 年 4 月 19 日 AI研习社

PAKDD 是数据挖掘领域历史最悠久,最领先的国际会议之一。它为研究人员和行业从业者提供了一个国际论坛,供大家分享在 KDD 相关领域的新想法,原创研究成果和实践开发经验。

4 月 15 日至 17 日,第 23 届 PAKDD 2019 在澳门隆重举行,AI 研习社前往现场为大家带来直播。

视频观看地址:https://ai.yanxishe.com/page/meeting/71

同时,我们准备为关注数据挖掘的同学们准备了一个微信社群,可以添加小助手微信,让她邀请你加入微信群聊。

为了回馈社区用户,我们跟部分嘉宾老师争取到了 PPT 资料,下载地址可以点击【阅读原文】获得。

Keynote Speaker:Jennifer Neville

  分享主题

Towards Relational AI -- the good, the bad, and the ugly of learning over networks 

  嘉宾信息

Jennifer Neville,现任普渡大学计算机科学和数据系的副教授。她于 2006 年取得 马萨诸塞大学阿默斯特分校的博士学位,是第 19 届 SIAMSDM(SIAM International Conference on Data Mining)大会的程序委员会主席,从 2015 年到 2018 年,她担任 AAI 执行委员会委员。同时,在 2016 年,她也担任了 ACMWSDM(ACM International Conference on Web Search and Data Mining) 的程序委员会主席。在 2012 年,她入选成为 DARPA CSSG(DARPA Computer Science Study Group)成员之一。她的学术作品有超过 100 多条同行评审,7500 多次引用,研究重点在于研究机器学习和人工智能技术,以此解决复杂的实际问题:例如社交网络、信息网络和物理网络。

  分享主题

In the last 20 years, there has been a great deal of research on machine learning methods for graphs, networks, and other types of relational data. By moving beyond the independence assumptions of more traditional ML methods, relational models are now able to successfully exploit the additional information that is often observed in relationships among entities. Specifically, network models are able to use relational information to improve predictions about user interests, behavior, and interactions, particularly when individual data is sparse. The tradeoff however, is that the heterogeneity, partial-observability, and interdependence of large-scale network data can make it difficult to develop efficient and unbiased methods, due to several algorithmic and statistical challenges. In this talk, I will discuss these issues while surveying several general approaches used for relational learning in large-scale social and information networks. In addition, to reflect on the movement toward pervasive use of the models in personalized online systems, I will discuss potential implications for privacy, polarization of communities, and spread of misinformation.

  资料截图

注:本资源仅供个人学习、交流参考用,切勿用于商业用途。


AI求职百题斩 · 每日一题


每天进步一点点,长按扫码参与每日一题!




点击【阅读原文】进入下载页面

登录查看更多
2

相关内容

亚太知识发现和数据挖掘会议(PAKDD)是数据挖掘和知识发现领域成立时间最长、最具领导地位的国际会议之一。它为研究人员和行业从业者提供了一个国际论坛,以分享他们来自所有KDD相关领域的新思想、原始研究成果和实际开发经验,包括数据挖掘、数据仓库、机器学习、人工智能、数据库、统计、知识工程、可视化、决策系统和新兴应用程序。 官网地址:http://dblp.uni-trier.de/db/conf/pakdd/
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【Facebook AI】低资源机器翻译,74页ppt
专知会员服务
29+阅读 · 2020年4月8日
【资源】100+本免费数据科学书
专知会员服务
107+阅读 · 2020年3月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
资源 | 深度学习进阶视频课程+完整PPT
AI研习社
7+阅读 · 2018年9月1日
增强学习 分享ppt
机器学习读书会
7+阅读 · 2017年1月7日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
53+阅读 · 2018年12月11日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
VIP会员
Top
微信扫码咨询专知VIP会员