一文读懂深度适配网络(DAN)

2017 年 7 月 14 日 数据派THU

来源:知乎专栏

作者:Lukas Biewald

本文长度为2500字,建议阅读5分钟

本文为你介绍清华大学的龙明盛老师在ICML-15上提出的深度适配网络。

这周五下午约见了机器学习和迁移学习大牛、清华大学的龙明盛老师。老师为人非常nice,思维敏捷,非常健谈!一不留神就谈了1个多小时,意犹未尽,学到了很多东西!龙明盛老师在博士期间(去年博士毕业)发表的文章几乎全部是A类顶会,他在学期间与世界知名学者杨强、Philip S. Yu及Michael I. Jordan多次合作,让我非常膜拜!这次介绍他在ICML-15上提出的深度适配网络。

深度适配网络(Deep Adaptation Netowrk,DAN)是清华大学龙明盛提出来的深度迁移学习方法,最初发表于2015年的机器学习领域顶级会议ICML上。DAN解决的也是迁移学习和机器学习中经典的domain adaptation问题,只不过是以深度网络为载体来进行适配迁移。DAN是深度迁移学习领域的代表性工作,被UC Berkeley、HKUST等世界知名大学不断引用。杨强老师对DAN的评价很高,在Google Scholar上也有着很高的引用量,可以被看作是深度迁移学习领域的经典文章。值得注意的是DAN文章的最后一位作者是Michael I. Jordan,机器学习领域的泰山北斗。所以这篇文章的含金量非常的大。

背景

继Jason Yosinski在2014年的NIPS上的《How transferable are features in deep neural networks?》探讨了深度神经网络的可迁移性以后,有一大批工作就开始实际地进行深度迁移学习。我们简要回顾一下Jason工作的重要结论:对于一个深度网络,随着网络层数的加深,网络越来越依赖于特定任务;而浅层相对来说只是学习一个大概的特征。不同任务的网络中,浅层的特征基本是通用的。这就启发我们,如果要适配一个网络,重点是要适配高层——那些task-specific的层。

适配高层网络的代表性工作是Eric Tzeng等人在2014年发在arXiv上的《Deep domain confusion: maximizing for domain invariance》(至今没找到到底发在哪了)。这篇文章针对于预训练的AlexNet(8层)网络,在第7层(也就是feature层,softmax的上一层)加入了MMD距离来减小source和target之间的差异。这个方法简称为DDC。这篇文章概括一点说,就是适配了最高层网络,只有一层。那么,是否只适配这一层就够了呢?

介绍

DAN是在DDC的基础上发展起来的,它很好地解决了DDC的两个问题:

  1. DDC只适配了一层网络,可能还是不够,因为Jason的工作中已经明确指出不同层都是可以迁移的。所以DAN就多适配几层;

  2. DDC是用了单一核的MMD,单一固定的核可能不是最优的核。DAN用了多核的MMD(MK-MMD),效果比DDC更好。

方法

上面已经说过,DAN的创新点是多层适配和多核MMD。那么我们针对两个方面分别介绍。

多核MMD(Multi-kernel MMD,MK-MMD)

这个MK-MMD是基于原来的MMD发展而来的,它并不是这个文章提出来的,是由Gretton这位核方法大牛在2012年提出来的。原来的MMD呢,是说我们要把source和target用一个相同的映射映射在一个再生核希尔伯特空间(RKHS)中,然后求映射后两部分数据的均值差异,就当作是两部分数据的差异。最重要的一个概念是核,在MMD中这个是固定的,我们在实现的时候可以选择是高斯核还是线性核。这样的缺点是明显的:我怎么知道哪个核一定好?

MK-MMD就是为了解决这个问题。它提出用多个核去构造这个总的核,这样效果肯定会比一个核好呀!对于两个概率分布,它们的MK-MMD距离就是这个多个核一起定义的kernel就是这个式子很好理解。原来我们的

就是一个固定的函数嘛,现在我们把它用个不同kernel进行加权,权重就是。这样的表征能力一定不会比一个kernel差的!

多层适配

这个就很好理解了。原来的DDC方法只是适配了一层,现在DAN也基于AlexNet网络,适配最后三层(6~8层)。为什么是这三层?因为在Jason的文章中已经说了,网络的迁移能力在这三层开始就会特别地task-specific,所以要着重适配这三层。至于别的网络(比如GoogLeNet、VGG)等是不是这三层那就不知道了,那得一层一层地计算相似度。DAN只关注使用AlexNet。

总的方法

好了,我们已经把DAN的两个要点讲完了。现在总的来看一下DAN方法。它基于AlexNet网络,探索source和target之间的适配关系。任何一个方法都有优化的目标。DAN也不例外。它的优化目标由两部分组成:损失函数和分布距离。损失函数这个好理解,基本上所有的机器学习方法都会定义一个损失函数,它来度量预测值和真实值的差异。分布距离就是我们上面提到的MK-MMD距离。于是,DAN的优化目标就是:

这个式子中,表示网络的所有权重和bias参数,是用来学习的目标。其中分别是6和8,表示网络适配是从第6层到第8层,前面的不进行适配。表示source和target中所有有label的数据的集合。是惩罚系数。就定义了一个损失函数,在深度网络中一般都是cross-entropy。DAN的网络结构如下图所示。

学习策略

现在已经把问题定义的非常明确了,可以开始训练和学习了。学习一共分为两大类参数:学习网络参数和MMD的

学习

的学习依赖于MK-MMD距离的计算。通过kernel trick(类比于以前的MMD距离)我们总是可以把MK-MMD展开成一堆内积的形式。然而,数据之间两两计算内积是非常复杂的,时间复杂度为,这个在深度学习中的开销非常之大。怎么办?作者在这里采用了Gretton在文章提出的对MK-MMD的无偏估计:,其中的是一个四元组:。将kernel作用到上以后,变成

上面这些变换看着好恐怖。它是个什么意思呢?简单来说,它就是只计算了连续的一对数据的距离,再乘以2.这样就可以把时间复杂度降低到!至于具体的理论,可以去参考Gretton的论文,这里就不说了。反正这个计算方法是Gretton提出来的。

在具体进行SGD的时候,我们需要对所有的参数求导:对求导。在实际用multiple-kernel的时候,作者用的是多个高斯核。

学习

学习$\beta$主要是为了确定多个kernel的权重。学习的时候,目标是:确保每个kernel生成的MMD距离的方差最小。也就是这里的是估计方差。实际求解的时候问题可以被规约成一个二次规划问题求解,具体可以参照文章。

结论

DAN作为深度迁移学习的代表性方法,充分利用了深度网络的可迁移特性,然后又把统计学习中的MK-MMD距离引入,取得了很好的效果。作者在2017年又进一步对其进行了延伸,做出了Joint Adaptation Network (JAN),也发在了ICML 2017上。在JAN中,作者进一步把feature和label的联合概率分布考虑了进来,可以视作之前JDA(joint distribution adaptation)的深度版。下次我们介绍这个工作。总的来说,深度迁移学习在DAN和JAN的开创性工作面前,留给模型创新的空间已经不多了。这才是我们要思考的问题。如何推陈出新?

数学很重要!我们可以看到最重要的MK-MMD是搞数据的提出来的!好好学数学!

参考文献:

1. DAN文章:Long M, Cao Y, Wang J, et al. Learning transferable features with deep adaptation networks[C]//International Conference on Machine Learning. 2015: 97-105.

2. MK-MMD文章:Gretton A, Borgwardt K M, Rasch M J, et al. A kernel two-sample test[J]. Journal of Machine Learning Research, 2012, 13(Mar): 723-773.


作者简介:

王晋东(不在家),中国科学院计算技术研究所博士生,目前研究方向为机器学习、迁移学习、人工智能等。作者联系方式:微博@秦汉日记,个人网站http://jd92.wang/。


公众号底部菜单有惊喜哦!

企业,个人加入组织请查看“联合会”

往期精彩内容请查看“号内搜”

加入志愿者或联系我们请查看“关于我们”

登录查看更多
28

相关内容

清华大学软件学院副教授,博士生导师,大数据系统软件国家工程实验室机器学习组组长。分别于2008和2014年从清华大学获学士和博士学位,2014-2015年在加州大学伯克利分校大数据实验室(AMPLab)、统计人工智能实验室(SAIL)从事研究工作。研究领域包括机器学习理论、算法和系统,特别是迁移学习、深度学习、预测学习及其在图像视频识别、预测任务中的应用。以第一作者或通讯作者在ICML/NIPS/CVPR等CCF-A类会议和期刊上发表论文46篇,谷歌学术引用超过3700次,其中在ICML 2015发表的深度迁移学习论文单篇引用800余次。担任ICLR领域主席、ICML/NIPS/CVPR等国际会议(高级)程序委员会委员。主持国家重点研发计划子课题、国家自然科学基金课题3项,授权国家发明专利20项。获2012国际数据挖掘会议最佳论文提名,2016中国人工智能学会优秀博士论文,2018教育部技术发明一等奖(第4完成人)。
[ICML-Google]先宽后窄:对深度薄网络的有效训练
专知会员服务
34+阅读 · 2020年7月5日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
基于深度神经网络的少样本学习综述
专知会员服务
169+阅读 · 2020年4月22日
《迁移学习简明手册》,93页pdf
专知会员服务
134+阅读 · 2019年12月9日
基于深度学习的行人重识别研究进展,自动化学报
专知会员服务
38+阅读 · 2019年12月5日
VALSE Webinar 19-07期 迁移学习与领域适配
VALSE
5+阅读 · 2019年3月28日
SFFAI报告 | 常建龙 :深度卷积网络中的卷积算子研究进展
人工智能前沿讲习班
11+阅读 · 2018年10月22日
论文浅尝 | 用图网络做小样本学习
开放知识图谱
66+阅读 · 2018年6月30日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
【迁移学习】简述迁移学习在深度学习中的应用
产业智能官
15+阅读 · 2018年1月9日
入门 | 简述迁移学习在深度学习中的应用
机器之心
5+阅读 · 2018年1月5日
主流的深度学习模型有哪些?
量子位
4+阅读 · 2017年10月3日
[学习] 这些深度学习网络训练技巧,你了解吗?
菜鸟的机器学习
7+阅读 · 2017年7月29日
端对端的深度卷积神经网络在语音识别中的应用
深度学习每日摘要
6+阅读 · 2017年7月18日
Arxiv
4+阅读 · 2019年2月8日
Arxiv
7+阅读 · 2018年9月27日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
22+阅读 · 2018年2月14日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关资讯
VALSE Webinar 19-07期 迁移学习与领域适配
VALSE
5+阅读 · 2019年3月28日
SFFAI报告 | 常建龙 :深度卷积网络中的卷积算子研究进展
人工智能前沿讲习班
11+阅读 · 2018年10月22日
论文浅尝 | 用图网络做小样本学习
开放知识图谱
66+阅读 · 2018年6月30日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
【迁移学习】简述迁移学习在深度学习中的应用
产业智能官
15+阅读 · 2018年1月9日
入门 | 简述迁移学习在深度学习中的应用
机器之心
5+阅读 · 2018年1月5日
主流的深度学习模型有哪些?
量子位
4+阅读 · 2017年10月3日
[学习] 这些深度学习网络训练技巧,你了解吗?
菜鸟的机器学习
7+阅读 · 2017年7月29日
端对端的深度卷积神经网络在语音识别中的应用
深度学习每日摘要
6+阅读 · 2017年7月18日
相关论文
Top
微信扫码咨询专知VIP会员