内容来源:2017年5月6日,大眼科技CTO张逸在“魅族技术开放日第八期——数据洞察”进行《大数据平台架构技术选型与场景运用》演讲分享。
阅读字数:1819 | 4分钟阅读
本次分享将结合多个大数据项目与产品研发的经验,探讨如何基于不同的需求场景搭建通用的大数据平台。内容涵盖数据采集、存储与分析处理等多方面的主流技术、架构决策与技术选型的经验教训。
http://t.cn/R9xaSOB
大数据平台内容
数据源往往是在业务系统上,大多数做数据分析的时候,不会直接对业务的数据源进行处理,这时就需要数据采集。
采集到数据之后,基于数据源的特点把这些数据存储下来。
最后根据存储的位置做数据分析和处理。
整个大的生态圈的核心就是数据采集、数据存储和数据分析。
数据源的特点
数据源的特点决定了数据采集与数据存储的技术选型。数据源的特点主要有来源、结构、可变性和数据量四大类。
来源有内部数据和外部数据,它们的处理方式是不一样的。
结构型数据和非结构型数据的选型也是不同的。
第三个特点是数据是否具有可变性,分为不变可添加和可以修改删除两种类型。
数据量则有大数据量和小数据量之分。
内部数据
内部数据来自企业系统内部,可以采用主动写入技术,从而保证变更数据及时被采用。
外部数据
外部数据分为API调用和网络爬虫。
如果要取到的数据本身提供了API,可以通过调用API来获得数据。
另一种情况是没有提供API,通过爬虫去把数据“爬”过来。
非结构化数据&结构化数据
非结构化数据和结构化数据在存储的时候选型完全不同。非结构化数据更多会选择NoSQL的数据库,而结构化数据考虑到数据的一致性和查询在某些方面做join时的快速性,则会更偏向于选择传统的关系型数据库,或是像TERADATA这样非开源的专业数据库,以及PostgreSQL这种支持分布式的数据库。
不变可添加
如果数据源的数据是不变的,或者只允许添加,则采集会变得非常容易,同步时只需要考虑最简单的增量同步策略,维持数据的一致性也变得相对容易。
可修改可删除
数据源的数据有些可能会修改或删除,尤其是许多维表经常需要变动。要对这样的数据进行分析处理,最简单的办法就是采用直连形式。如果要进行数据采集,就要考虑同步问题。
大数据量
利用时间来处理大数据量并不是一个实时的处理方式。要做到实时的处理方式,应该采用流式处理。要将两种方式结合起来,就要用到大数据的lambda架构。
Lambda架构分为了三层,最下层是speed layer,要求速度快,也就是实时。
最上层是batch layer,也就是批处理。
通过中间层serving layer,定期或不定期地把batch views和speed views去做merged,会产生一个结合了batch的数据。它既满足了一定的实时性,又能满足一定的大数据量。这是目前比较流行的一种大数据的处理方式。
一个典型的数据加载架构
数据存储的技术选型
取决于数据源的类型与数据的采集方式。
取决于采集后数据的格式与规模。
取决于分析数据的应用场景。
大数据平台的特征就是,相同的业务数据会以多种不同的表现形式,存储在不同类型的数据库中,形成一种poly-db的数据冗余生态。
场景一:舆情分析
针对某手机品牌的舆情分析。客户提出的需求是能够对舆情数据进行全文本搜索。舆情数据最高可能达到70亿条,而全文本搜索的性能指标要求响应时间控制在10s以内。
爬虫爬到kafka里面,进行流处理去虫去噪,再做语义分析,语义分析完之后将舆情数据写入ES,全量数据写入HDFS。
场景二:商业智能产品
聚合运算把数据源采集存储的时候,是基于列的运算,而传统数据库是行式存储。行式存储针对于列的运算需要全表才能拿到,这时选择用parquet。因为parquet是以列式方式做存储,所以做统计分析很快。但parquet执行查询会很慢,没有优势。
场景三:Airbnb的大数据平台
Airbnb的数据一部分来自于本身的业务数据在MySQL,还有一部分是大量的事件。数据源不同,处理的方式也不一样。
基于日志,就用事件写入kafka;如果是针对MySQL,就用Sqoop,写入HDFS里,并建立Hive的集群。还存了一份数据放入亚马逊的S3。
有一部分业务就是对数据合并后放入HDFS做大量的业务查询和业务统计。这时希望用SQL的方式进行查询,会有很多选项,它选择的是Presto。
还有一些流式处理或机器学习要用到Spark,选型就会不同。
数据处理的分类
从业务角度来看,可以分为查询检索、数据挖掘、统计分析和深度分析。
从技术角度分为五类,batch MapReduce、SQL、流式处理、Machine Learning和DeepLearning。
编程模型有离线编程模型、内存编程模型和实时编程模型。
基于数据源的特点、分类,采集的方式,以及存储的选型,到数据分析和处理的分类,可得出一个相对总体的大数据平台架构。
我今天的分享就到这里,谢谢大家!
新一代技术+商业操作系统:AI-CPS OS
在新一代技术+商业操作系统(AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生,在行业、企业和自身三个层面勇立鳌头。
数字化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置。
分辨率革命:这种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品控制、事件控制和结果控制。
复合不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。
边界模糊化:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。
领导者无法依靠某种单一战略方法来应对多维度的数字化变革。随着变革范围不断扩大,一切都几乎变得不确定,即使是最精明的领导者也可能失去方向。面对新一代技术+商业操作系统(AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)颠覆性的数字化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位。
如果不能在上述三个层面保持领先,领导力将会不断弱化并难以维继:
重新进行行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?
重新构建你的企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?
重新打造新的自己:你需要成为怎样的人?要重塑自己并在数字化时代保有领先地位,你必须如何去做?
子曰:“君子和而不同,小人同而不和。” 《论语·子路》
云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。
如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。
在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。
云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!
人工智能通过三个方式激发经济增长:
创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;
对现有劳动力和实物资产进行有利的补充和提升,提高资本效率;
人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间。
新一代信息技术(云计算、大数据、物联网、区块链和人工智能)的商业化落地进度远不及技术其本身的革新来得迅猛,究其原因,技术供应商(乙方)不明确自己的技术可服务于谁,传统企业机构(甲方)不懂如何有效利用新一代信息技术创新商业模式和提升效率。
“产业智能官”,通过甲、乙方价值巨大的云计算、大数据、物联网、区块链和人工智能的论文、研究报告和商业合作项目,面向企业CEO、CDO、CTO和CIO,服务新一代信息技术输出者和新一代信息技术消费者。
助力新一代信息技术公司寻找最有价值的潜在传统客户与商业化落地路径,帮助传统企业选择与开发适合自己的新一代信息技术产品和技术方案,消除新一代信息技术公司与传统企业之间的信息不对称,推动云计算、大数据、物联网、区块链和人工智能的商业化浪潮。
给决策制定者和商业领袖的建议:
迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新
评估未来的知识和技能类型;
制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开
发过程中确定更加明晰的标准和最佳实践;
重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临
较高失业风险的人群;
超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机
器智能,为企业创造新商机;
开发人工智能型企业所需新能力:员工团队需要积极掌握判断、沟通及创造
性思维等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多
样性的文化也非常重要。
新一代技术+商业操作系统(AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。
重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。
新一代技术+商业操作系统(AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)正在经历从“概念”到“落地”,最终实现“大范围规模化应用,深刻改变人类生活”的过程。
产业智能官 AI-CPS
用新一代技术+商业操作系统(AI-CPS OS:云计算+大数据+物联网+区块链+人工智能),在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链。
长按上方二维码关注微信公众号: AI-CPS,更多信息回复:
新技术:“云计算”、“大数据”、“物联网”、“区块链”、“人工智能”;新产业:“智能制造”、“智能驾驶”、“智能金融”、“智能城市”、“智能零售”;新模式:“案例分析”、“研究报告”、“商业模式”、“供应链金融”、“财富空间”。
本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!
版权声明:由产业智能官(公众号ID:AI-CPS)推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com