最新《域自适应视觉应用》ECCV2020教程,67页PPT

2020 年 12 月 24 日 专知


虽然在许多领域产生并提供了大量的未标记数据,但获取数据标签的成本仍然很高。另一方面,用深度神经网络解决问题已经变得非常流行,但目前的方法通常依赖大量的标记训练数据来实现高性能。为了克服注释的负担,文献中提出了利用来自同一领域的可用未标记数据的解决方案,称为半监督学习;利用相似但又不同领域的已有标记的数据或训练过的模型,称为领域自适应。本教程的重点将是后者。领域自适应在社会上也越来越重要,因为视觉系统部署在任务关键应用中,其预测具有现实影响,但现实世界的测试数据统计可以显著不同于实验室收集的训练数据。我们的目标是概述视觉领域适应方法,这一领域在计算机视觉领域的受欢迎程度在过去几年中显著增加,这可以从过去几年在顶级计算机视觉和机器学习会议上发表的大量的相关论文中得到证明。


https://europe.naverlabs.com/eccv-2020-domain-adaptation-tutorial/



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“DA67” 可以获取《最新《域自适应视觉应用》ECCV2020教程,67页PPT》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
3

相关内容

专知会员服务
17+阅读 · 2021年4月16日
「图像视频深度异常检测」简明综述论文
专知会员服务
38+阅读 · 2021年3月8日
专知会员服务
321+阅读 · 2020年11月24日
最新《域自适应视觉应用》ECCV2020教程,43页PPT
专知会员服务
26+阅读 · 2020年11月5日
【PKDD2020教程】机器学习不确定性,附88页ppt与视频
专知会员服务
95+阅读 · 2020年10月18日
(ICML 2020 Tutorial)贝叶斯深度学习与概率模型构建,134页ppt
【KDD2020】多源深度域自适应的时序传感数据
专知会员服务
62+阅读 · 2020年5月25日
【KDD2020】图神经网络:基础与应用,322页ppt
图神经网络推理,27页ppt精炼讲解
专知
3+阅读 · 2020年4月24日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
6+阅读 · 2019年4月8日
Pluralistic Image Completion
Arxiv
8+阅读 · 2019年3月11日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2021年4月16日
「图像视频深度异常检测」简明综述论文
专知会员服务
38+阅读 · 2021年3月8日
专知会员服务
321+阅读 · 2020年11月24日
最新《域自适应视觉应用》ECCV2020教程,43页PPT
专知会员服务
26+阅读 · 2020年11月5日
【PKDD2020教程】机器学习不确定性,附88页ppt与视频
专知会员服务
95+阅读 · 2020年10月18日
(ICML 2020 Tutorial)贝叶斯深度学习与概率模型构建,134页ppt
【KDD2020】多源深度域自适应的时序传感数据
专知会员服务
62+阅读 · 2020年5月25日
Top
微信扫码咨询专知VIP会员