CVPR 2022大会主席、港科大教授权龙:计算机视觉的现状与未来

2019 年 4 月 8 日 THU数据派


来源:AI科技评论

本文约5200字建议10+分钟

权龙教授发表了题为《三维视觉重新定义人工智能安防》的演讲。


近日,由雷锋网主办的第二届中国人工智能安防峰会在杭州召开。


峰会现场,香港科技大学教授,CVPR 2022、ICCV 2011大会主席,Altizure创始人权龙教授发表了题为《三维视觉重新定义人工智能安防》的演讲。


权教授表示,人工智能的核心是视觉,视觉定义了智能安防,但现在的视觉仍局限在二维识别层面,未来三维视觉重建将会成为最重要的任务, 它也将重新定义智能安防。


权教授也谈到,现在计算机视觉本质上是大数据统计意义上的分类与识别。


“我们的终极目标是对图像的理解,也就是认知,但当前的计算机视觉只处于感知阶段,我们并不知如何理解,计算机视觉一直是要探索最基础的视觉特征,这一轮视觉卷积神经网络CNN本质上重新定义了计算机视觉的特征。但人类是生活在三维环境中的双目动物,这使得人类生物视觉的识别不只是识别,同时也包括三维感知与环境交互。”


“因此我们要和三维打交道,二维识别所能做的事,在当前众多复杂场景中,是远远不够的。但三维重建不是最终目的,而且是要把三维重建和识别融为一体。


以下为权龙教授的现场演讲内容,我们作了不改变原意的编辑及整理:



感谢邀请,今天我主要分享下现阶段计算机视觉的现状与未来发展方向,以及三维视觉在人工智能安防中的应用。


我们知道,现在AI安防的核心,本质上是计算机视觉,而计算机视觉分为两大部分,分别是识别和重建。


“识别”是现在非常热门的方向,相比而言,大家对“重建”的理解却并没有那么透彻。我们需要知道这一点,计算机视觉不止局限于识别,三维重建在其中扮演的角色甚至更为重要。


这是三维重建和安防融合的实际案例:



这些景物都是由三维构建,我们把实时视频投影到三维,用户在界面上也可以“前、后、左、右”拖动操作。


接下来我要讲的是当前计算机视觉存在的问题,以及为何三维视觉将重新定义计算机视觉,并且重新定义人工智能安防。


人工智能的本质上是让计算机去听、看、读,在所有的信息里面,视觉信息占了所有感官的80%,所以视觉基本上是现代人工智能的核心。


对我们来说,其实并没有泛泛的人工智能,人工智能需要具体根据技术维度和场景维度,区分开来看,人工智能的发展、革命和应用落地,一定是取决于以及受限于计算机视觉发展、革命和应用。


而人工智能安防也同样是伴随着计算机视觉的发展而崛起。


2012年是非常重要的一年,当时在ImageNet比赛中,有团队用卷积神经网络CNN把图像识别准确率从75%提高到了85%,这件“非常小”的事情带动了这一轮深度学习之下的人工智能,所以我们也可把2012年称作是这轮以深度学习为代表的人工智能元年。


这件事再回到1998年,那个年代Yann Lecun已经发表了卷积神经网络LeNet,这个网络呢,首先它输入的图像比较小,只黑白单通道32*32,只能识别出一些字符和字母;因为也没有GPU,所以当时整个网络也只有60万的参数。


到了2012年卷积神经网络复活出现了AlexNet。AlexNet和1998年LeNet的卷积神经网络相比,它的内部结构基本不变,但可输入的图像尺寸不一样:1998年的模型,输入尺寸为32*32,且只有一个通道。新的模型输入尺寸已经扩大到了224*224,而且有三个通道。最关键的是里面有了GPU,当时的训练用到了两块GPU,参数达到将近6000万。



这么多年来计算机视觉的卷积神经网络,算法和结构,基本的结构变化是很小的。


但1998年到2012年这十五年来发生了两件特别重要的事:一是英伟达研发了GPU;第二就是李飞飞创建了ImageNet,她把几百万张照片发到网络上并发动群众做了标注。也正是因为算力和数据,才创造了AlexNet的成就。


到了2015年,机器视觉的识别率基本超越了人类。其实人类在识别方面并没有那么强,我们的记忆非常容易犯错误。根据统计,人类在分类上的错误率达到了5%。而机器,从2015年之后你们看各种ImageNet在公开域数据集上的错误率已经远远低于5%。


但为什么ImageNet在两年前停止了比赛,因为现在比拼的基本上都是靠算力和数据。


2015年随着卷积神经网络下的人工智能技术的成熟,AI也到达了一定的巅峰,计算机视觉或者说更宽泛的安防市场也被重新定义。


也在这一时期,旷视、商汤这几家做视觉的公司进入了安防市场。


从2012年到2019年的7年间,所有的数据又都翻了一千倍,计算速度比以前快一千倍,模型也比以前大一千倍。2012年训练AlexNet模型需要使用两块GPU,花费两个星期;今天做同样的事情只需要一块DGX-2,十几分钟就能完成。


从整个模型的参数来看,2012年的AlexNet已非常可观,6000万的参数非常庞大,这个数字我们当时都不敢想象。到今天这个网络又要放大千倍,达到十亿级的参数量。但是从算法、架构来说,现在基本上都是标准的卷积神经网络,其实并没有太大的进步。


我们也可以想一下,计算机视觉里面的识别到底能够达到什么程度?其实它并没有那么强,它只是在一个大数据统计意义上的识别而已。


大家都听说过无监督学习,但无监督学习的结果和应用的场景并不是太多。现在可用的、做的好的也就是可监督的,也就是CNN。


我简要概括下,现在的计算机视觉就是基于卷积神经网络而来,整个CNN的架构非常简单,能做的事其实也没那么多,它提取了高维的特征,然后要结合其它方法解决视觉问题。


如果你有足够的数据并且能够明确定义你想要的东西,CNN的效果很好,但是它有没有智能?其实没有。


你说它蠢,它跟以前一样蠢。它能识别出猫和狗,但我们要知道猫和狗的分类都是我们人类自己定义的,我们可以把猫和狗分开,也可以把复杂的狗类动物进行聚合和分类,这些东西本质上来说并不是客观的,而是主观的。



我们做计算机视觉研究的理想,是让机器进行理解图像。如何让它进行理解?这非常的困难,直到现在也没有人知道它怎么去进行理解。现在它能做的,只能做到认知。我们研究计算机视觉的目的是得到视觉特征,有了视觉特征后才能开展一系列工作。


为什么视觉特征如此重要?在语音识别领域,语音的特征已经定义得非常清晰——音素。但如果我们拿来一个图像,问它最重要的视觉特征是什么,答案并不明确。大家知道图像包含像素,但像素并不是真正的特征。像素只是一个数字化的载体,将图像进行了数字化的表述。计算机视觉的终极目标就是寻找行之有效的视觉特征。


在这样一个拥有视觉特征前提之下,计算机视觉也只有两个现实目的,一个是识别,另一个是三维重建。


它们的英文单词都以“re”做前缀,说明这是一个反向的问题。


计算机视觉不是一个很好定义(ill-posed)的问题,没有一个完美的答案或方法。


这一轮的卷积神经网络(CNN)最本质的一件事是重新定义了计算机视觉的特征。在此之前,所有的特征都是人工设计的。今天CNN学来的东西,它学到特征的维度动辄几百万,在以前没有这类网络的情况下是根本做不到的。


纵使CNN的特征提取能力极其强,但是我们不要忘记建立在CNN基础上的计算机视觉是单目识别,而人类是双目。我们的现实世界是在一个三维空间,我们要和三维打交道。拿着二维图像去做识别,这远远不够。


在双目视觉下,要包含深度、视差和重建三个概念,它们基本等价,使用哪个词汇取决你处在哪个群体。


传统意义上,三维重建是在识别之前,它是一个最本质的问题,三维视觉里面也要用到识别,但是它的识别是对同样物体在不同视角下的识别,所以说它的识别是更好定义(well-posed) 的一个识别,也叫匹配。


双目视觉对整个生物世界的等级划分是非常严格的。大家知道马的眼睛往外看,对角的部分才有可能得到一部分三维信息,但它的三维视角非常小,不像人类。鱼的眼睛也是往两边看的,它的主要视线范围是单目的,它能看到的双目视区也是非常狭窄的一部分。


人类有两只眼睛,通过两只眼睛才能得到有深度的三维信息。当然,通过一只移动的眼睛,也可以获得有深度的信息。


获取深度信息的挑战很大,它本质上是一个三角测量问题。第一步需要将两幅图像或两只眼睛感知到的东西进行匹配,也就是识别。这里的“识别”和前面有所不同,前面提到的是有标注情况下的识别,这里的“识别”是两幅图像之间的识别,没有数据库。它不仅要识别物体,还要识别每一个像素,所以对计算量要求非常高。



在生物世界里,双目视觉非常重要,哺乳动物都有双目视觉,而且越凶猛的食肉的动物双目重叠的区域越大,用双目获得的深度信息去主动捕捉猎物。吃草的或被吃的动物视觉单目视觉,视野很宽,只有识别而无深度,目的是被进攻时跑得快!


在这一轮的CNN之前,计算机视觉里面研究最多的是三维重建这样的问题,在CNN之前有非常好的人工设计的视觉特征,这些东西本质上最早都是为三维重建而设计,例如SIFT特征。而在这之后的“识别”,只是把它放在一个没有结构的图像数据库里去搜索而已。 由此可见,现代三维视觉是由三维重建所定义。CNN诞生之前,它曾是视觉发展的主要动力源于几何,因为它的定义相对清晰。


我们再来看一下当今的三维重建技术的现状和挑战。


三维视觉既有理论又有算法,一部分是统计,另外一部分则是确定性的,非统计,也就是传统的应用数学。


计算机视觉中的三维重建包含三大问题:


  • 定位置。假如我给出一张照片,计算机视觉要知道这张照片是在什么位置拍的。

  • 多目。通过多目的视差获取三维信息,识别每一个像素并进行匹配,进行三维重建。

  • 语义识别。完成几何三维重建后,要对这个三维信息进行语义识别,这是重建的最终目的。


这里我再强调下,我们要把三维场景重新捕捉,但三维重建不是最终的目的,你要把识别加进去,所以说最终的应用肯定要把三维重建和识别融为一体。


现在三维重建的主要挑战是,算力不够,而且采集也比较困难。我举个例子,我们安防场景识别一个摄像头比较容易,但如果实时重建N个摄像头的实景,这对算力要求非常高。这些限制也使得当前的单目应用比较多,但我认为,未来双目一定会成趋势。


在深度学习的影响下,三维重建已经取得了比较大的成就。CNN在2012年之后的几年内,对三维重建的影响不是很大。但是从2017年开始,CNN就对三维重建产生了重要的影响。在三维重建领域有一个数据集叫KITTI,从2017年,我们开始用三维卷积神经网络。


以前是把它作为一个跟识别有关系的二维CNN,更现代的双目算法都是基于完整的三维卷积神经网络。现阶段三维卷积神经网络的表现也非常强,给任何两幅图像,错误率只有百分之2到3。


现在计算机视觉覆盖的应用场景,被计算机视觉重新定义,但这些应用也受制于计算机视觉的技术瓶颈。


虽然计算机视觉对安防行业的推动作用很大,但基本也不外乎识别人脸、车、物体等应用,如果计算机视觉得到进一步发展,安防行业也将再度被重新定义。


而我认为,三维视觉将对安防产生非常深远的影响。


三维重建在安防领域的应用,第一个是大规模城市级别的三维重建。



每个大型城市动辄都百万级的摄像头,把摄像头融合在这样的一个实景三维场景里,才可达到城市级管控的效果,这是AI安防最理想化的形态。


现在政府都在通过一张实景图对城市进行治理,这张图以前是二维的,但今后一定是实景的,是三维的。


我们港科大的三维视觉初创公司Altizure就是一家做城市级别的实景三维重建和平台企业,大规模重建有两方面非常有挑战性:


  • 第一是因为它的数据量非常大,我们现在建模动辄百万级的高清图像,要有强大的分布式以及并行算法,几个星期才能做完。

  • 第二就是可视化,一张实景图的展示也特别有挑战性,因为一张实景图数据量非常大,即便是在任何一个端口的浏览实景三维都是非常有挑战性的。


现时只有Altizure可以应对这个挑战。


我们做的一个典型案例就是为深圳坪山区布局了时空信息云平台,我们对坪山的大片住宅区域进行了三维重建,后台用户可在三维实景图像上进行“上、下放大“以及”前、后、左、右”拖拽移动,来查看区域实景。


后台用户也可用鼠标在三维实景图像中选取部分区域,然后这一区域的各个重点视频监控画面便在大屏幕中一一实时展示。坪山第一期项目的实时监控视频显示,与常规的视频监控后台呈现效果相似,总体更为传统一些。


而在二期和三期,我们开始可以把所有的视频在三维平台上进行展示。


现在深圳已经有很多区在布局这类实景三维立体时空信息平台。


有了这样的平台,不仅是视频,其实还有一些别的数据也是可以加进去应用。


这个总控系统,集成了景区的监控摄像,闸机,商店,wifi等公共设施,实时可视化人流、电瓶车位置。三维实景给景区总控和下一步游客的导览带来了便利。


下图是我们在广州做第一个案例,对历史建筑进行保护以及城市规划。



Altizure实景三维视觉平台现在已经有180个国家的实景三维内容和30万专业用户。



我们的香港科技大学计算机视觉实验室和初创公司Altizure 在全球引领视觉三维重建的研究与应用。我们的目的并不是为刷榜而刷榜,但在一些关键的三维榜单,我们从去年四月以来一直稳居榜首!



最后总结一下,计算机视觉中的“识别”定义了智能安防,但现在的“视觉”和“识别”仍局限在二维,三维重建是未来计算机视觉中最为重要的任务,因此三维重建也将重新定义人工智能以及智能安防。


现在的视觉研究,同质化现象非常明显。


我们在八十年代就开始做人工智能了,今天的现状,有点像是历史重演,计算机视觉的本质跟以往并没什么差别,只是大家用的硬件工具不一样。


计算机视觉虽然正处于黄金时期 ,但它的发展还是非常有局限性的,我认为,所谓的通用人工智能和通用计算机视觉还遥遥无期。


谢谢大家!


编辑:黄继彦

校对:林亦霖


登录查看更多
10

相关内容

智能化安防技术随着科学技术的发展与进步和二十一世纪信息技术的腾飞已迈入了一个全新的领域,智能化安防技术与计算机之间的界限正在逐步消失。
【哈佛大学】机器学习的黑盒解释性,52页ppt
专知会员服务
166+阅读 · 2020年5月27日
 第八届中国科技大学《计算机图形学》暑期课程课件
专知会员服务
54+阅读 · 2020年3月4日
【学科发展报告】计算机视觉
中国自动化学会
42+阅读 · 2018年10月12日
【机器视觉】计算机视觉简介:历史、现状和发展趋势
【计算机视觉简介】历史、现状和发展趋势
GAN生成式对抗网络
8+阅读 · 2017年11月25日
【观点】计算机视觉:历史、现状和发展趋势|胡占义研究员
中国科学院自动化研究所
12+阅读 · 2017年11月21日
计算机视觉简介:历史、现状和发展趋势
专知
9+阅读 · 2017年11月20日
【机器视觉】张长水:图像识别与机器学习
产业智能官
7+阅读 · 2017年10月23日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Arxiv
30+阅读 · 2019年3月13日
Area Attention
Arxiv
5+阅读 · 2019年2月5日
Arxiv
7+阅读 · 2018年8月28日
Arxiv
21+阅读 · 2018年2月14日
VIP会员
相关资讯
【学科发展报告】计算机视觉
中国自动化学会
42+阅读 · 2018年10月12日
【机器视觉】计算机视觉简介:历史、现状和发展趋势
【计算机视觉简介】历史、现状和发展趋势
GAN生成式对抗网络
8+阅读 · 2017年11月25日
【观点】计算机视觉:历史、现状和发展趋势|胡占义研究员
中国科学院自动化研究所
12+阅读 · 2017年11月21日
计算机视觉简介:历史、现状和发展趋势
专知
9+阅读 · 2017年11月20日
【机器视觉】张长水:图像识别与机器学习
产业智能官
7+阅读 · 2017年10月23日
相关论文
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Arxiv
30+阅读 · 2019年3月13日
Area Attention
Arxiv
5+阅读 · 2019年2月5日
Arxiv
7+阅读 · 2018年8月28日
Arxiv
21+阅读 · 2018年2月14日
Top
微信扫码咨询专知VIP会员