GitHub趋势榜第一:TensorFlow+PyTorch深度学习资源大汇总

2019 年 6 月 9 日 极市平台

加入极市专业CV交流群,与6000+来自腾讯,华为,百度,北大,清华,中科院等名企名校视觉开发者互动交流!更有机会与李开复老师等大牛群内互动!

同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流点击文末“阅读原文”立刻申请入群~


本文转自公众号新智元

【导读】该项目是Jupyter Notebook中TensorFlow和PyTorch的各种深度学习架构,模型和技巧的集合。内容非常丰富,适用于Python 3.7,适合当做工具书。

本文搜集整理了Jupyter Notebook中TensorFlow和PyTorch的各种深度学习架构,模型和技巧,内容非常丰富,适用于Python 3.7,适合当做工具书。


大家可以将内容按照需要进行分割,打印出来,或者做成电子书等,随时查阅。


传统机器学习


感知器


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/perceptron.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/perceptron.ipynb


逻辑回归


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/logistic-regression.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/logistic-regression.ipynb


Softmax Regression (Multinomial Logistic Regression)


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/softmax-regression.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression.ipynb


多层感知器


多层感知器


多层感知器


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-basic.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-basic.ipynb


具有Dropout多层感知器


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-dropout.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-dropout.ipynb


具有批量归一化的多层感知器


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-batchnorm.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-batchnorm.ipynb


具有反向传播的多层感知器


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-lowlevel.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-fromscratch__sigmoid-mse.ipynb


CNN


基础


CNN


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/convnet.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-basic.ipynb


具有He初始化的CNN


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-he-init.ipynb


概念


用等效卷积层代替完全连接


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/fc-to-conv.ipynb


全卷积


全卷积神经网络


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-allconv.ipynb


AlexNet


AlexNet on CIFAR-10


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb


VGG


CNN VGG-16


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-vgg16.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16.ipynb


VGG-16 Gender Classifier Trained on CelebA


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba.ipynb


CNN VGG-19


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg19.ipynb


ResNet


ResNet and Residual Blocks


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/resnet-ex-1.ipynb


ResNet-18 Digit Classifier Trained on MNIST


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb


ResNet-18 Gender Classifier Trained on CelebA


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-celeba-dataparallel.ipynb


ResNet-34 Digit Classifier Trained on MNIST


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-mnist.ipynb


ResNet-34 Gender Classifier Trained on CelebA


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-celeba-dataparallel.ipynb


ResNet-50 Digit Classifier Trained on MNIST


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-mnist.ipynb


ResNet-50 Gender Classifier Trained on CelebA


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-celeba-dataparallel.ipynb


ResNet-101 Gender Classifier Trained on CelebA


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb


ResNet-152 Gender Classifier Trained on CelebA


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet152-celeba.ipynb


Network in Network


Network in Network CIFAR-10 Classifier


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10.ipynb 


度量学习


具有多层感知器的孪生网络


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/metric/siamese-1.ipynb


自动编码机


全连接自动编码机


自动编码机


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/autoencoder.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb


具有解卷积/转置卷积的卷积自动编码机


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-deconv.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv.ipynb


具有解卷积的卷积自动编码机(无池化操作)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/aer-deconv-nopool.ipynb


具有最近邻插值的卷积自动编码机


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/autoencoder-conv-nneighbor.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor.ipynb


具有最近邻插值的卷积自动编码机 - 在CelebA上进行训练


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb


具有最近邻插值的卷积自动编码机 - 在Quickdraw上训练


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-quickdraw-1.ipynb


变分自动编码机


变分自动编码机


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-var.ipynb


卷积变分自动编码机


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-var.ipynb


条件变分自动编码机


条件变分自动编码机(重建丢失中带标签)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae.ipynb


条件变分自动编码机(重建损失中没有标签)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae_no-out-concat.ipynb


卷积条件变分自动编码机(重建丢失中带标签)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae.ipynb


卷积条件变分自动编码机(重建损失中没有标签)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae_no-out-concat.ipynb


GAN


MNIST上完全连接的GAN


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan.ipynb


MNIST上的卷积GAN


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan-conv.ipynb


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv.ipynb


具有标签平滑的MNIST上的卷积GAN


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv-smoothing.ipynb


RNN


Many-to-one: Sentiment Analysis / Classification


A simple single-layer RNN (IMDB)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_imdb.ipynb


A simple single-layer RNN with packed sequences to ignore padding characters (IMDB)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_packed_imdb.ipynb


RNN with LSTM cells (IMDB)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb.ipynb


RNN with LSTM cells and Own Dataset in CSV Format (IMDB)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb


RNN with GRU cells (IMDB)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb


Multilayer bi-directional RNN (IMDB)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb


Many-to-Many / Sequence-to-Sequence


A simple character RNN to generate new text (Charles Dickens)


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb


序数回归


Ordinal Regression CNN -CORAL w. ResNet34 on AFAD-Lite


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-coral-afadlite.ipynb


Ordinal Regression CNN -Niu et al. 2016 w. ResNet34 on AFAD-Lite


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb


Ordinal Regression CNN -Beckham and Pal 2016 w. ResNet34 on AFAD-Lite


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb


技巧和窍门


Cyclical Learning Rate


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/tricks/cyclical-learning-rate.ipynb


PyTorch工作流程和机制


自定义数据集


使用PyTorch数据集加载实用程序用于自定义数据集-CSV文件转换为HDF5


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-csv.ipynb


使用PyTorch数据集加载自定义数据集的实用程序 - 来自CelebA的图像


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-celeba.ipynb


使用PyTorch数据集加载自定义数据集的实用程序 - 从Quickdraw中提取


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-quickdraw.ipynb


使用PyTorch数据集加载实用程序用于自定义数据集 - 从街景房号(SVHN)数据集中绘制


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/custom-data-loader-svhn.ipynb


训练和预处理


带固定内存的数据加载


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-cifar10-pinmem.ipynb


标准化图像


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-standardized.ipynb


图像转换示例


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/torchvision-transform-examples.ipynb


Char-RNN with Own Text File


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb


Sentiment Classification RNN with Own CSV File


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb


并行计算


在CelebA上使用具有DataParallel -VGG-16性别分类器的多个GPU


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba-data-parallel.ipynb


其它 


Sequential API and hooks 


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-sequential.ipynb


图层内的权重共享


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/cnn-weight-sharing.ipynb


仅使用Matplotlib在Jupyter Notebook中绘制实时训练性能


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/plot-jupyter-matplotlib.ipynb


Autograd


在PyTorch中获取中间变量的渐变


PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/manual-gradients.ipynb


TensorFlow工作流及机制


自定义数据集


使用NumPy NPZ Archives为Minibatch训练添加图像数据集


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-npz.ipynb


使用HDF5存储用于Minibatch培训的图像数据集


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-hdf5.ipynb


使用输入Pipeline从TFRecords文件中读取数据


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/tfrecords.ipynb


使用队列运行器直接从磁盘提供图像


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/file-queues.ipynb


使用TensorFlow的Dataset API


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/dataset-api.ipynb


训练和预处理


保存和加载训练模型 - 来自TensorFlow Checkpoint文件和NumPy NPZ Archives


TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/saving-and-reloading-models.ipynb


参考链接:

https://github.com/rasbt/deeplearning-models




*延伸阅读



点击左下角阅读原文”,即可申请加入极市目标跟踪、目标检测、工业检测、人脸方向、视觉竞赛等技术交流群,更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流,一起来让思想之光照的更远吧~


△长按关注极市平台


觉得有用麻烦给个在看啦~  

登录查看更多
30

相关内容

【资源】100+本免费数据科学书
专知会员服务
107+阅读 · 2020年3月17日
《深度学习》圣经花书的数学推导、原理与Python代码实现
一网打尽!100+深度学习模型TensorFlow与Pytorch代码实现集合
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
163+阅读 · 2019年10月28日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
深度学习算法与架构回顾
专知会员服务
80+阅读 · 2019年10月20日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
Yann LeCun都推荐的深度学习资料合集!
InfoQ
14+阅读 · 2019年7月7日
GitHub趋势榜第一,深度学习模型大合集!!
机器学习算法与Python学习
9+阅读 · 2019年6月13日
Github库分享:超全的PyTorch学习资源汇总
专知
21+阅读 · 2019年5月9日
资源 | Github项目:斯坦福大学CS-224n课程中深度NLP模型的PyTorch实现
黑龙江大学自然语言处理实验室
10+阅读 · 2017年11月13日
Arxiv
4+阅读 · 2019年9月26日
Arxiv
13+阅读 · 2018年1月20日
VIP会员
相关VIP内容
【资源】100+本免费数据科学书
专知会员服务
107+阅读 · 2020年3月17日
《深度学习》圣经花书的数学推导、原理与Python代码实现
一网打尽!100+深度学习模型TensorFlow与Pytorch代码实现集合
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
163+阅读 · 2019年10月28日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
深度学习算法与架构回顾
专知会员服务
80+阅读 · 2019年10月20日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员