3 月初,谷歌刚刚上线的机器学习课程刷屏科技媒体头条。激动过后,多数 AI 学习者会陷入焦虑:入坑人工智能,到底要从何入手?
的确,如今学习人工智能最大的困难不是找不到资料,更多同学的痛苦是:网上资源太多了,以至于没法知道从哪儿开始搜索,也没法知道搜到什么程度。
为了节省大家的时间,我们搜遍网络把最好的免费资源汇总整理到这篇文章当中。这些链接够你学上很久,而且你看完本文一定会再次惊叹:现在网上关于机器学习、深度学习和人工智能的信息真的非常多。
许多著名的人工智能研究人员都在网络上有很强的影响力,我们列出了 22 个专家,也给出了能够找到他们详细信息的网站:
1. Sebastian Thrun:
http://robots.stanford.edu
2. Yann Lecun:
http://yann.lecun.com
3. Nando de Freitas:
http://www.cs.ubc.ca/~nando/
4. Andrew Ng:
http://www.andrewng.org
5. Daphne Koller:
http://ai.stanford.edu/users/koller/
6. Adam Coates:
http://cs.stanford.edu/~acoates/
7. Jürgen Schmidhuber:
http://people.idsia.ch/~juergen/
8. Geoffrey Hinton:
http://www.cs.toronto.edu/~hinton/
9. Terry Sejnowski:
http://www.salk.edu/scientist/terrence-sejnowski/
10. Michael Jordan:
https://people.eecs.berkeley.edu/~jordan/
11. Peter Norvig:
http://norvig.com
12. Yoshua Bengio:
http://www.iro.umontreal.ca/~bengioy/yoshua_en/
13.Ian Goodfellow:
http://www.iangoodfellow.com
14.Andrej Karpathy:
http://karpathy.github.io
15. Richard Socher:
http://www.socher.org
16.Demis Hassabis:
http://demishassabis.com
17. Christopher Manning:
https://nlp.stanford.edu/~manning/
18. Fei-Fei Li:
http://vision.stanford.edu/people.html
19. François Chollet:
https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en
20. Larry Carin:
http://people.ee.duke.edu/~lcarin/
21. Dan Jurafsky:
https://web.stanford.edu/~jurafsky/
22. Oren Etzioni:
http://allenai.org/team/orene/
许多研究机构致力于促进人工智能的研究与开发,我们列出了一些机构的网站:
1. OpenAI(推特关注数 12.7 万):
https://openai.com
2. DeepMind(推特关注数 8 万):
https://deepmind.com
3. Google Research(推特关注数 110 万):
https://research.googleblog.com
4. AWS AI(推特关注数 140 万):
https://aws.amazon.com/blogs/ai/
5. Facebook AI Research:
https://research.fb.com/category/facebook-ai-research-fair/
6. Microsoft Research(推特关注数 34.1 万):
https://www.microsoft.com/en-us/research/
7. Baidu Research(推特关注数 1.8 万):
http://research.baidu.com
8. IntelAI(推特关注数 2 千):
https://software.intel.com/en-us/ai-academy
9. AI²(推特关注数 4.6 千):
http://allenai.org
10. Partnership on AI(推特关注数 5 千):
https://www.partnershiponai.org
网上也有大量的视频课程和教程,其中很多都是免费的,还有一些付费的也很不错,但是在这篇文章中我们只提供免费内容的链接(这些免费课程可以让你学上好几个月):
1. Coursera — Machine Learning( Andrew Ng ):
https://www.coursera.org/learn/machine-learning#syllabus
2. Coursera — Neural Networks for Machine Learning( Geoffrey Hinton ):
https://www.coursera.org/learn/neural-networks
3. Machine Learning( mathematicalmonk ):
https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA
4. Practical Deep Learning For Coders( Jeremy Howard & Rachel Thomas ):
http://course.fast.ai/start.html
5. Stanford CS231n — Convolutional Neural Networks for Visual Recognition( Winter 2016 ):
https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
6. 斯坦福 CS231n【中字】视频:
http://study.163.com/course/introduction/1003223001.htm
7. Stanford CS224n — Natural Language Processing with Deep Learning( Winter 2017 ):
https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6
8. Oxford Deep NLP 2017( Phil Blunsom et al. ):
https://github.com/oxford-cs-deepnlp-2017/lectures
9. 牛津 Deep NLP【中字】视频:
http://study.163.com/course/introduction/1004336028.htm
10. Reinforcement Learning( David Silver ):
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
11. Practical Machine Learning Tutorial with Python( sentdex ):
https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM
YouTube 上有很多频道、用户都经常会发布一些 AI 或者机器学习相关的内容,我们把这些链接按照订阅数 / 观看数多少列示在下边,这样方便看出来哪个更受欢迎:
1. sendex( 22.5 万订阅,2100 万次观看 ):
https://www.youtube.com/user/sentdex
2. Siraj Raval( 14 万订阅,500 万次观看 ):
https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
3. Two Minute Papers( 6 万订阅,330 万次观看 ):
https://www.youtube.com/user/keeroyz
4. DeepLearning.TV( 4.2 万订阅,140 万观看 ):
https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ
5. Data School( 3.7 万订阅,180 万次观看 ):
https://www.youtube.com/user/dataschool
6. Machine Learning Recipes with Josh Gordon( 32.4 万次观看 ):
https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal
7. Artificial Intelligence — Topic( 1 万订阅):
https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ
8. Allen Institute for Artificial Intelligence ( AI2 )( 1.6 千订阅,6.9万 次观看 ):
https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ
9. Machine Learning at Berkeley( 634 订阅,4.8 万次观看 ):
https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg
10. Understanding Machine Learning — Shai Ben-David( 973 订阅,4.3 万次观看 ):
https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q
11. Machine Learning TV( 455 订阅,1.1 万次观看 ):
https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw
虽然人工智能和机器学习现在这么火,但是我很惊讶地发现相关博主并没有那么多。可能是因为内容比较复杂,把有意义的部分整理出来需要花很大精力;也有可能是因为类似 Quora 这样的平台比较多,专家们回答问题更方便也不需要花太多时间做详细论述。
下面是按照推特的关注数排序介绍一些博主,他们一直在做人工智能相关的原创内容,而不只是一些新闻摘要或者公司博客:
1. Andrej Karpathy(推特关注数 6.9 万):
http://karpathy.github.io
2. i am trask(推特关注数 1.4 万):
http://iamtrask.github.io
3. Christopher Olah(推特关注数 1.3 万):
http://colah.github.io
4. Top Bots(推特关注数 1.1 万):
http://www.topbots.com
5. WildML(推特关注数 1 万):
http://www.wildml.com
6. Distill(推特关注数 9 千):
https://distill.pub
7. Machine Learning Mastery(推特关注数 5 千):
http://machinelearningmastery.com/blog/
8. FastML(推特关注数 5 千):
http://fastml.com
9. Adventures in NI(推特关注数 5 千):
https://joanna-bryson.blogspot.de
10. Sebastian Ruder(推特关注数 3 千):
http://sebastianruder.com
11. Unsupervised Methods(推特关注数 1.7 千):
http://unsupervisedmethods.com
12. Explosion(推特关注数 1 千):
https://explosion.ai/blog/
12. Tim Dettmers(推特关注数 1 千):
http://timdettmers.com
13. When trees fall…( 推特关注数 265 ):
http://blog.wtf.sg
14. ML@B( 推特关注数 80 ):
https://ml.berkeley.edu/blog/
下面介绍到的是 Medium 上人工智能相关的顶级作者,按照 2017 年 Mediumas 的排行榜排序:
1. Robbie Allen:
https://medium.com/@robbieallen
2. Erik P.M. Vermeulen:
https://medium.com/@erikpmvermeulen
3. Frank Chen:
https://medium.com/@withfries2
4. azeem:
https://medium.com/@azeem
5. Sam DeBrule:
https://medium.com/@samdebrule
6. Derrick Harris:
https://medium.com/@derrickharris
7. Yitaek Hwang:
https://medium.com/@yitaek
8. samim:
https://medium.com/@samim
9. Paul Boutin:
https://medium.com/@Paul_Boutin
10. Mariya Yao:
https://medium.com/@thinkmariya
11. Rob May:
https://medium.com/@robmay
12. Avinash Hindupur:
https://medium.com/@hindupuravinash
市面上有许多关于机器学习、深度学习和自然语言处理等方面的书籍,这里只列示了可以直接从网上免费获得或者下载的书籍:
机器学习
1. Understanding Machine Learning From Theory to Algorithms:
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
2. Machine Learning Yearning:
http://www.mlyearning.org
3. A Course in Machine Learning:
http://ciml.info
4. Machine Learning:
https://www.intechopen.com/books/machine_learning
5. Neural Networks and Deep Learning:
http://neuralnetworksanddeeplearning.com
6. Deep Learning Book:
http://www.deeplearningbook.org
7. Reinforcement Learning: An Introduction:
http://incompleteideas.net/sutton/book/the-book-2nd.html
8. Reinforcement Learning:
https://www.intechopen.com/books/reinforcement_learning
自然语言处理
1. Speech and Language Processing( 3rd ed. draft ):
https://web.stanford.edu/~jurafsky/slp3/
2. Natural Language Processing with Python:
http://www.nltk.org/book/
3. An Introduction to Information Retrieval:
https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
数学
1. Introduction to Statistical Thought:
http://people.math.umass.edu/~lavine/Book/book.pdf
2. Introduction to Bayesian Statistics:
https://www.stat.auckland.ac.nz/~brewer/stats331.pdf
3. Introduction to Probability:
https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf
4. Think Stats: Probability and Statistics for Python programmers:
http://greenteapress.com/wp/think-stats-2e/
5. The Probability and Statistics Cookbook:
http://statistics.zone
6. Linear Algebra:
http://joshua.smcvt.edu/linearalgebra/book.pdf
7. Linear Algebra Done Wrong:
http://www.math.brown.edu/~treil/papers/LADW/book.pdf
8. Linear Algebra, Theory And Applications:
https://math.byu.edu/~klkuttle/Linearalgebra.pdf
9. Mathematics for Computer Science:
https://courses.csail.mit.edu/6.042/spring17/mcs.pdf
10. Calculus:
https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
11. Calculus I for Computer Science and Statistics Students:
http://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf
Quora 已经成为人工智能和机器学习的重要资源,许多顶尖的研究人员会在上面回答问题。下面我列出了一些主要关于人工智能的话题,如果你想自定义你的 Quora 喜好,你可以选择订阅这些话题。记得去查看每个话题下的 FAQ 部分(例如机器学习下常见问题解答),你可以看到 Quora 社区里提供的一些常见问题列表:
1. 计算机科学( 560 万关注):
https://www.quora.com/topic/Computer-Science
2. 机器学习( 110 万关注):
https://www.quora.com/topic/Machine-Learning
3. 人工智能( 63.5 万关注):
https://www.quora.com/topic/Artificial-Intelligence
4. 深度学习( 16.7 万关注):
https://www.quora.com/topic/Deep-Learning
5. 自然语言处理( 15.5 万关注):
https://www.quora.com/topic/Natural-Language-Processing
6. 机器学习分类( 11.9 万关注):
https://www.quora.com/topic/Classification-machine-learning
7. 通用人工智能 ( 8.2 万关注):
https://www.quora.com/topic/Artificial-General-Intelligence
8. 卷积神经网络( 2.5 万关注):
https://www.quora.com/topic/Convolutional-Neural-Networks-1?merged_tid=360493
9. 计算语言学( 2.3 万关注):
https://www.quora.com/topic/Computational-Linguistics
10. 循环神经网络( 1.74 万关注):
https://www.quora.com/topic/Recurrent-Neural-Networks-RNNs
Reddit 上的人工智能社区并没有 Quora 上那么活跃,但是还是有一些很不错的话题。相对于 Quora 问答的形式,Reddit 更适合于用来跟踪最新的新闻和研究。下面是一些主要关于人工智能的 Reddit 话题,按照订阅人数排序。
1. /r/MachineLearning( 11.1 万订阅):
https://www.reddit.com/r/MachineLearning
2. /r/robotics/( 4.3 万订阅):
https://www.reddit.com/r/robotics/
3. /r/artificial( 3.5 万订阅):
https://www.reddit.com/r/artificial/
4. /r/datascience( 3.4 万订阅):
https://www.reddit.com/r/datascience
5. /r/learnmachinelearning( 1.1 万订阅):
https://www.reddit.com/r/learnmachinelearning/
6. /r/computervision( 1.1 万订阅):
https://www.reddit.com/r/computervision
7. /r/MLQuestions( 8 千订阅):
https://www.reddit.com/r/MLQuestions
8. /r/LanguageTechnology( 7 千订阅):
https://www.reddit.com/r/LanguageTechnology
9. /r/mlclass( 4 千订阅):
https://www.reddit.com/r/mlclass
10. /r/mlpapers( 4 千订阅):
https://www.reddit.com/r/mlpapers
人工智能社区的好处之一是大部分新项目都是开源的,并且能在 GitHub 上获取到。同样如果你想了解使用 Python 或者 Juypter Notebooks 来实现实例算法,GitHub 上也有很多学习资源可以帮助到你。以下是一些 GitHub 项目:
1. 机器学习( 6 千个项目):
https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=✓
2. 深度学习( 3 千个项目):
https://github.com/search?q=topic%3Adeep-learning&type=Repositories
3. Tensorflow( 2 千个项目):
https://github.com/search?q=topic%3Atensorflow&type=Repositories
4. 神经网络( 1 千个项目):
https://github.com/search?q=topic%3Aneural-network&type=Repositories
5. 自然语言处理( 1 千个项目):
https://github.com/search?utf8=✓&q=topic%3Anlp&type=Repositories
人工智能相关的播客数量在不断的增加,有些播客关注最新的新闻,有些关注教授相关知识。
1. Concerning AI:
https://concerning.ai
2. his Week in Machine Learning and AI:
https://twimlai.com
3. The AI Podcast:
https://blogs.nvidia.com/ai-podcast/
4. Data Skeptic:
http://dataskeptic.com
5. Linear Digressions:
https://itunes.apple.com/us/podcast/linear-digressions/id941219323
6. Partially Derivative:
http://partiallyderivative.com
7. O’Reilly Data Show:
http://radar.oreilly.com/tag/oreilly-data-show-podcast
8. Learning Machines 101:
http://www.learningmachines101.com
9. The Talking Machines:
http://www.thetalkingmachines.com
10. Artificial Intelligence in Industry:
http://techemergence.com
11. Machine Learning Guide:
http://ocdevel.com/podcasts/machine-learning
如果你想追踪最新的新闻和研究的话,种类渐增的每周新闻是一个不错的选择:其中大部分都包含相同的内容,所以订阅两三个就足够:
1. The Exponential View:
https://www.getrevue.co/profile/azeem
2. AI Weekly:
http://aiweekly.co
3. Deep Hunt:
https://deephunt.in
4. O’Reilly Artificial Intelligence Newsletter:
http://www.oreilly.com/ai/newsletter.html
5. Machine Learning Weekly:
http://mlweekly.com
6. Data Science Weekly Newsletter:
https://www.datascienceweekly.org
7. Machine Learnings:
http://subscribe.machinelearnings.co
8. Artificial Intelligence News:
http://aiweekly.co
9. When trees fall…:
https://meetnucleus.com/p/GVBR82UWhWb9
10. WildML:
https://meetnucleus.com/p/PoZVx95N9RGV
11. Inside AI:
https://inside.com/technically-sentient
12. Kurzweil AI:
http://www.kurzweilai.net/create-account
13. Import AI:
https://jack-clark.net/import-ai/
14. The Wild Week in AI:
https://www.getrevue.co/profile/wildml
15. Deep Learning Weekly:
http://www.deeplearningweekly.com
16. Data Science Weekly:
https://www.datascienceweekly.org
17. KDnuggets Newsletter:
http://www.kdnuggets.com/news/subscribe.html?qst
随着人工智能的普及,人工智能相关的科研会议数量也在不断增加。我只提了几个主要的会议,没列所有的。(当然会议并不是免费的!)
学术会议
1. NIPS (Neural Information Processing Systems):
https://nips.cc
2. ICML (International Conference on Machine Learning):
https://2017.icml.cc
3. KDD (Knowledge Discovery and Data Mining):
http://www.kdd.org
4. ICLR (International Conference on Learning Representations):
http://www.iclr.cc
5. ACL (Association for Computational Linguistics):
http://acl2017.org
6. EMNLP (Empirical Methods in Natural Language Processing):
http://emnlp2017.net
7. CVPR (Computer Vision and Pattern Recognition):
http://cvpr2017.thecvf.com
7. ICCV (International Conference on Computer Vision):
http://iccv2017.thecvf.com
专业会议
1. O’Reilly Artificial Intelligence Conference:
https://conferences.oreilly.com/artificial-intelligence/
2. Machine Learning Conference( MLConf ):
http://mlconf.com
3. AI Expo( North America, Europe, World ):
https://www.ai-expo.net
4. AI Summit:
https://theaisummit.com
5. AI Conference:
https://aiconference.ticketleap.com/helloworld/
arXiv 是较早的预印本库,也是物理学及相关专业领域中最大的,该数据库目前已有数学、物理学和计算机科学方面的论文可开放获取的达 50 多万篇。
1. Artificial Intelligence:
https://arxiv.org/list/cs.AI/recent
2. Learning( Computer Science ):
https://arxiv.org/list/cs.LG/recent
3. Machine Learning( Stats ):
https://arxiv.org/list/stat.ML/recent
4. NLP:
https://arxiv.org/list/cs.CL/recent
5. Computer Vision:
https://arxiv.org/list/cs.CV/recent
Semantic Scholar 是由微软联合创始人保罗 · 艾伦创立的艾伦人工智能研究所推出的学术搜索引擎:
1. Neural Networks( 17.9 万条结果):
https://www.semanticscholar.org/search?q=%22neural%20networks%22&sort=relevance&ae=false
2. Machine Learning( 9.4 万条结果):
https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&ae=false
3. Natural Language( 6.2 万条结果):
https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false
4. Computer Vision( 5.5 万条结果):
https://www.semanticscholar.org/search?q=%22computer%20vision%22&sort=relevance&ae=false
5. Deep Learning( 2.4 万条结果):
https://www.semanticscholar.org/search?q=%22deep%20learning%22&sort=relevance&ae=false
6. Andrej Karpathy 开发的网站:
http://www.arxiv-sanity.com/
我另外单独有一篇详细的文章涵盖了我发现的所有的优秀教程内容:
超过 150 种最佳的机器学习、自然语言处理和 Python 教程:
https://unsupervisedmethods.com/over-150-of-the-best-machine-learning-nlp-and-python-tutorials-ive-found-ffce2939bd7
和教程一样,我同样单独有一篇文章介绍了许多种很有用的小抄表:
机器学习、Python 和数学小抄表:
https://unsupervisedmethods.com/cheat-sheet-of-machine-learning-and-python-and-math-cheat-sheets-a4afe4e791b6
通读完本篇文章,是不是对于如何查找关于人工智能领域的资料有了清晰的方向。资料很多,大多都是国外的网站,所以大家需要科学上网。
原文链接:https://unsupervisedmethods.com/my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524
责任编辑:李雨侬
点击下方图片即可阅读
对话胡时伟:获得三大国有银行同时入股后,第四范式要为企业传递 AI 价值