算法集锦|国内外医学图像肝脏分割研究

2018 年 9 月 4 日 中国图象图形学报

内容来源:《中国图象图形学报》第8期论文

结合改进的U-Net和Morphsnakes的肝脏分割

作者:刘哲,张晓林,宋余庆,等

单位:江苏大学

来源:中国图象图形学报, 2018, 23(8):1254-1262

推荐阅读

CT肝脏分割 | 结合改进的U-Net和Morphsnakes的肝脏分割
  


文献[1]提出运用阈值、形态学操作、K-means 聚类和多层感知神经网络(Multi-Layer Perceptron Network, MLP)对肝脏进行分割。[DOI:10.1016/j.compbiomed.2008.04.006]

文献[2]提出了一种基于区域生长的肝脏CT图像分割方法,通过运用拟蒙特卡洛(Quasi-MonteCarlo)算法获取感兴趣区域的种子点和设计区域生长准则。[DOI:10.1016/j.ijleo.2013.10.049]

文献[3]提出一种基于先验信息水平集方法的肝脏CT序列图像自动分割方法,用二次区域生长法获取肝脏的初步分割结果,将其作为先验知识,构造新的边缘指示函数和水平集能量函数,最后应用自适应边缘行进算法修补边缘,细化分割。[DOI:10.11817/j.issn.1672-7207.2015.04.020]

文献[4]提出了基于层次的上下文活动轮廓(HCAC)的于三维CT肝脏全自动分割方法,先利用训练图像以及对应的手动肝脏分割结果学习模型,然后使用上下文活动轮廓(CAC)进行迭代分割,得到最后的分割结果。[http://mall.cnki.net/magazine/Article/SWGC201402032.htm]

文献[5]提出了一种将凸性可变模型与图像亮度和局部区域特征相结合的肝脏自动分割方法。[DOI:10.11999/JEIT141473]

文献[6]利用相邻切片之间的空间相关性构建图割能量函数,迭代分割整个序列。[DOI: 10.1007/978-3-642-33418-4_49]

文献[7]结合相邻切片之间的位置信息构建图割能量函数,用图割算法实现肝脏初始分割,再结合亮度和轮廓几何特性,运用边缘行进算法优化分割结果。该方法需要手动分割初始切片,并且对于对比度较低的图像分割效果较差。[http://www.cnki.com.cn/Article/CJFDTotal-DZYX201606031.htm]

卷积神经网络具有有高效的特征提取能力、良好的容错能力、自学习能力、自适应性能好等优势,基于卷积神经网络的图像分割方法成为目前研究的热点。文献[8]采用端到端的全卷积神经网络,实现了生物医学图像中的细胞分割,这是全卷积神经网络在医学图像分割领域的第一次应用。 [DOI: 10.1007/978-3-319-24574-4_28]

文献[9]直接采用两个级联的U-Net的网络模型实现肝脏以及肝脏肿瘤的分割。 [DOI: 10.1007/978-3-319-46723-8_48]

文献[10]采用基于VGG-16修改的FCN-8s来实现肝脏以及肝脏损伤的检测。但是该方法分割结果不够精细,分割的图像边缘粗糙。 [DOI: 10.1007/978-3-319-46976-8_9]

      本文[11]对U-Net进行了改进和优化,重新构建了IU-Net模型,在输出输入等尺寸的基础上,大大提高CT图像肝脏的分割准确率,并且通过OpenCV和Morphsnakes算法对IU-Net的分割结果进行精细分割,使最后的分割结果边界更加平滑、精确。[DOI:10.11834/jig.170585]

参考文献

[1]  Selver M A, Kocaoǧlu A, Demir G K, et al. Patient oriented and robust automatic liver segmentation for pre-evaluation of liver transplantation[J]. Computers in Biology and Medicine, 2008, 38 (7) : 765 –784.    

[2]  Lu X Q, Wu J S, Ren X Y, et al. The study and application of the improved region growing algorithm for liver segmentation[J]. Optik-International Journal for Light and Electron Optics, 2014, 125 (9) : 2142 –2147.     

[3]  赵于前, 闫桂霞, 徐效文, 等. 基于先验信息水平集方法的肝脏CT序列图像自动分割[J]. 中南大学学报:自然科学版, 2015, 46 (4) : 1310 –1317.  

[4]  吉宏伟, 何江萍, 杨新. 基于层次上下文活动轮廓的三维CT肝脏图像分割[J]. 生物医学工程学杂志, 2014, 31 (2) : 405 –412. 

[5]  韩明, 刘教民, 孟军英, 等. 结合局部能量与改进的符号距离正则项的图像目标分割算法[J]. 电子与信息学报, 2015, 37 (9) : 2047 –2054. 

[6]  Afifi A, Nakaguchi T. Liver segmentation approach using graph cuts and iteratively estimated shape and intensity constrains[M]//Ayache N, Delingette H, Golland P, et al. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2012. Berlin, Heidelberg: Springer, 2012, 7511: 395-403. 

[7]  廖苗, 赵于前, 曾业战, 等. 基于图割和边缘行进的肝脏CT序列图像分割[J]. 电子与信息学报, 2016, 38 (6) : 1552 –1556. 

[8]  Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.

[9]  Christ P F, Ettlinger F, Grün F, et al. Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields[C]//Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2016: 415-423.

[10]  Ben-Cohen A, Diamant I, Klang E, et al. Fully convolutional network for liver segmentation and lesions detection[C]//Proceedings of the First International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Cham: Springer, 2016: 77-85.

[11]  刘哲,张晓林,宋余庆,等.结合改进的U-Net和Morphsnakes的肝脏分割[J]. 中国图象图形学报, 2018, 23(8): 1254-1262.



前沿丨观点丨咨讯丨独家

扫描下方二维码 关注学报公众号

中国图象图形学报 | 订阅号

点击这里阅读原文



登录查看更多
2

相关内容

医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。它包含以下两个相对独立的研究方向:医学成像系统(medical imaging system)和医学图像处理(medical image processing)。前者是指图像行成的过程,包括对成像机理、成像设备、成像系统分析等问题的研究;后者是指对已经获得的图像作进一步的处理,其目的是或者是使原来不够清晰的图像复原,或者是为了突出图像中的某些特征信息,或者是对图像做模式分类等等。
基于改进卷积神经网络的短文本分类模型
专知会员服务
25+阅读 · 2020年7月22日
最新《医学图像深度语义分割》综述论文
专知会员服务
95+阅读 · 2020年6月7日
[CVPR 2020-港中文-MIT] 神经架构搜索鲁棒性
专知会员服务
25+阅读 · 2020年4月7日
专知会员服务
41+阅读 · 2020年2月20日
【华侨大学】基于混合深度学习算法的疾病预测模型
专知会员服务
96+阅读 · 2020年1月21日
最全综述 | 图像分割算法
极市平台
23+阅读 · 2019年6月23日
最全综述 | 医学图像处理
计算机视觉life
57+阅读 · 2019年6月15日
深度学习与医学图像分析
人工智能前沿讲习班
40+阅读 · 2019年6月8日
病理图像的全景分割
人工智能前沿讲习班
16+阅读 · 2019年6月1日
中科院赵地:深度学习在 4 大超声影像中的应用
AI掘金志
9+阅读 · 2017年12月17日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
VIP会员
相关资讯
最全综述 | 图像分割算法
极市平台
23+阅读 · 2019年6月23日
最全综述 | 医学图像处理
计算机视觉life
57+阅读 · 2019年6月15日
深度学习与医学图像分析
人工智能前沿讲习班
40+阅读 · 2019年6月8日
病理图像的全景分割
人工智能前沿讲习班
16+阅读 · 2019年6月1日
中科院赵地:深度学习在 4 大超声影像中的应用
AI掘金志
9+阅读 · 2017年12月17日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
Top
微信扫码咨询专知VIP会员