这里是纯干货!2018年深度学习的10个发展预测 | 技术

2018 年 1 月 4 日 网易智能菌 聚焦AI的

点击上方蓝字关注网易智能

  聚焦AI,读懂下一个大时代!



【网易智能讯 1月4日消息】我有一种预感,2018年可能是一切都发生戏剧性变化的一年。2017年深度学习取得的惊人突破将在2018年以一种非常有力的方式延续下去。2017年的研究工作将会转移到日常的软件应用中。


像去年那样,我整理了一份2018年深度学习的预测清单:


1、大部分深度学习硬件初创公司会失败


许多深度学习硬件创业公司将开始在2018年最终交付他们的成品。大部分走向萧条,因为他们没有提供好的软件来支持新解决方案。这些公司拥有硬件作为他们的DNA。不幸的是,在深度学习领域,软件也同样重要。这些创业公司大多不懂软件,也不理解开发软件的成本。这些公司可能会交付产品,但不会运行良久。


易实现的收缩阵列(systolic array)解决方案已经被采用,因此不会有2017年那样的10倍性能升级。研究人员将这些tensor cores不仅用于推断,还用于加快训练速度。


英特尔的解决方案将继续被推迟,而且可能会令人失望。记录显示英特尔无法在2017年中期发布,交付时间难以预测,这太迟了,而且会很糟糕。


谷歌将继续以TPU的开发项目给世界带来惊喜。或许,谷歌会通过将其IP授权给其他半导体厂商来涉足硬件业务。如果它继续成为除英伟达以外唯一真正的玩家,这将是有意义的。


2、基于新随机梯度下降(SGD)的元学习


2017年,元学习领域的大量研究成果出现。随着研究群体对元学习的整体理解能力加强,随机梯度下降(SGD)的旧范式将被搁置,取而代之的是一种更有效的方法,兼具开发和探索性。


非监督学习的进步将是渐进的,但主要是由元学习算法驱动的。


3、生成模型驱动了一种新的建模方法


生成模型不断发展。目前,大多数研究都是在生成图像和语音方面进行的。不过,我们应当看到这些方法结合工具被用于复杂系统的建模。其中的一个应用领域是经济建模。


4、“自对弈”(Self-play)是自动的知识创造


AlphaGo Zero和AlphaZero之间从零开始学习到“自对弈”学习是一次巨大的飞跃,在我看来,它和深度学习的到来有着同样的影响。深度学习发现了通用函数近似器(Universal Function Approximators)。强化学习“自对弈”发现了普遍的知识创造。


期待看到更多与“自对弈”(Self-play)相关的进步。


5、直觉机器将弥合语义鸿沟


这是我最大胆的预测。我们将弥合直觉机器和理性机器之间的语义鸿沟。


双过程理论(两个认知机器的概念,一个是无模型的,另一个是基于模型的)将会是更普遍的概念,即我们应该如何构建新的人工智能。在2018年,人工直觉的概念将不再是一个边缘概念,而是一个普遍接受的概念。


6、解释能力(Explainability)是无法实现的,我们只能假装


解释能力存在两个问题。更常见的问题是,解释对人们来说有太多的规则需要去掌握。第二个问题不太为人所知,那就是机器将会创造出完全陌生的概念,无法解释。我们已经在AlphaGo Zero和Alpha Zero的战略中看到了这一点。人类会观察到,此举是非常规的,但他们可能没有能力去理解这一举动背后的逻辑。


在我看来,这是一个无法解决的问题。取而代之的是,机器将变得非常善于“伪装解释”。简而言之,可解释的机器的目的是理解一个人能够自如地理解或能从直觉上理解的各种解释。然而,在大多数情况下,对人类来说,完整的解释是不可能的。


我们必须通过创造“假解释”来在深度学习中取得进展。


7、深度学习研究信息将减少


2017年对于从事深度学习研究的人来说已经很困难了。提交到ICLR 2018会议的论文数量约为4,000篇。一个研究人员每天要阅读10篇论文,仅仅是为了能与会议同步。


在这个领域,问题变得更加严重,因为所有的理论框架都在不断完善之中。为了在理论空间上取得进步,我们需要寻找更先进的数学知识,让我们有更好的洞察力。这将是一项艰苦的工作,因为大多数深度学习研究人员没有相应的数学背景来理解这类系统的复杂性。深度学习需要来自复杂性理论的研究人员,但这种类型的研究人员却很少。


由于论文太多,理论也不完善,我们只能看到今天我们所处的不受欢迎的状态。


此外,人工智能(AGI)的总体路线图也缺失了。这个理论很弱,因此,我们能做的最好的事情就是创建一个包含与人类认知相关的里程碑的路线图。我们只有一个源自认知心理学的推测理论的框架。这是一种糟糕的情况,因为来自这些领域的经验证据充其量只能是零星的。


深度学习研究论文在2018年可能会增加两倍或四倍。


8、工业化通过教学环境进行


深度学习系统的发展,是通过具体的教学环境的发展而实现的。我在这里和这里更详细地讨论这个问题。如果你想找到教学技巧的最高级形式,你只需要看看学习网络是如何训练的。我们都希望在这一领域取得更多进展。


预计将有更多公司披露其内部基础设施,以说明他们如何大规模部署深度学习。


9、对话认知产生


我们衡量AGI进展的方法是过时的。需要一种新的范式来解决现实世界中的动态(即非平稳)复杂性。我们应该在新的一年里看到更多关于这个新领域的报道。我将在3月1日至2日在阿姆斯特丹举行的信息能源2018上谈论这种新的对话认知范式。


10、对人工智能伦理使用的需求将会增加


如今,人们越来越意识到自动化失控造成的意外会带来的灾难性后果。我们今天在Facebook、Twitter、谷歌、亚马逊等网站上发现的简单自动化可能会对社会产生不必要的影响。


我们需要理解部署能够预测人类行为的机器的伦理道德。面部识别是我们掌握的最危险的能力之一。能够生成与现实难以区分的媒体的算法将会成为一个大问题。我们作为社会的一员,需要开始把人工智能仅仅作为一个造福社会的整体,而不是作为一种增加不平等的武器。


预计在接下来的一年里会有更多关于道德的讨论。然而,不要期待新的监管规定。在理解人工智能对社会的影响方面,政策制定者仍然落后。我不指望他们停止玩弄政治,开始解决社会真正的问题。美国人口已经成为众多安全漏洞的受害者,但我们还没有看到任何新的立法或倡议来解决这个严重的问题。所以不要屏住呼吸,我们的领导人会突然发现智慧。


准备迎接冲击,这就是我现在所拥有的一切。


2018年将是重要的一年,我们最好系紧安全带,准备迎接冲击。


(作者简介:Carlos E. Perez是“人工直觉”和“深度学习”手册的作者,也是Intuition Machine公司的创始人。)


选自:venturebeat

编译:网易智能

审校:nariiy 



扫码关注网易智能

加入社群


AI社群(AI专家群、AI黑板报)火热招募中,欢迎对AI感兴趣的小伙伴,添加小助手微信kaiwu_club,说明身份即可加入。


往期精华


人物专访  沈向洋 | 于尔根 | 洪小文 | 李德毅 | 尤瓦尔 | 哈萨比斯 | 宋继强 | 杨强 | 余凯 | 邓志东 | 芮勇 | 戴文渊 | 石博盟 | 韦东 | 黄学东


行业特稿  抢滩智能音箱(上) | 抢滩智能音箱(下) | 自动驾驶行业素描(上) | 自动驾驶行业素描(下) | 机器翻译技术与应用


重磅报告  麦肯锡(二) | AlphaBeta & ABC | 埃森哲 |  英国政府 | Internet Society | Forrester | VertoAnalytics 麦肯锡(一) | 苹果公司 | 耶鲁大学 

登录查看更多
2

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新《深度学习自动驾驶》技术综述论文,28页pdf
专知会员服务
153+阅读 · 2020年6月14日
基于深度学习的多标签生成研究进展
专知会员服务
141+阅读 · 2020年4月25日
【综述】金融领域中的深度学习,附52页论文下载
专知会员服务
163+阅读 · 2020年2月27日
新时期我国信息技术产业的发展
专知会员服务
69+阅读 · 2020年1月18日
金融时序预测中的深度学习方法:2005到2019
专知会员服务
166+阅读 · 2019年12月4日
2019年人工智能行业现状与发展趋势报告,52页ppt
专知会员服务
120+阅读 · 2019年10月10日
2019年深度学习的十大预测
人工智能学家
6+阅读 · 2019年1月31日
2019年机器学习:追踪人工智能发展之路
人工智能学家
4+阅读 · 2018年10月14日
2018年的人工智能和深度学习将会如何发展? | 分析
网易智能菌
3+阅读 · 2017年12月30日
迁移学习在深度学习中的应用
专知
23+阅读 · 2017年12月24日
2017深度学习NLP进展与趋势
云栖社区
7+阅读 · 2017年12月17日
NLP的这一年:深度学习或成主角
论智
3+阅读 · 2017年12月14日
Gartner:2018人工智能预测
走向智能论坛
4+阅读 · 2017年11月28日
Arxiv
101+阅读 · 2020年3月4日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
22+阅读 · 2019年11月24日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
18+阅读 · 2019年1月16日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Large-Scale Study of Curiosity-Driven Learning
Arxiv
8+阅读 · 2018年8月13日
Arxiv
7+阅读 · 2018年1月24日
VIP会员
相关VIP内容
最新《深度学习自动驾驶》技术综述论文,28页pdf
专知会员服务
153+阅读 · 2020年6月14日
基于深度学习的多标签生成研究进展
专知会员服务
141+阅读 · 2020年4月25日
【综述】金融领域中的深度学习,附52页论文下载
专知会员服务
163+阅读 · 2020年2月27日
新时期我国信息技术产业的发展
专知会员服务
69+阅读 · 2020年1月18日
金融时序预测中的深度学习方法:2005到2019
专知会员服务
166+阅读 · 2019年12月4日
2019年人工智能行业现状与发展趋势报告,52页ppt
专知会员服务
120+阅读 · 2019年10月10日
相关资讯
2019年深度学习的十大预测
人工智能学家
6+阅读 · 2019年1月31日
2019年机器学习:追踪人工智能发展之路
人工智能学家
4+阅读 · 2018年10月14日
2018年的人工智能和深度学习将会如何发展? | 分析
网易智能菌
3+阅读 · 2017年12月30日
迁移学习在深度学习中的应用
专知
23+阅读 · 2017年12月24日
2017深度学习NLP进展与趋势
云栖社区
7+阅读 · 2017年12月17日
NLP的这一年:深度学习或成主角
论智
3+阅读 · 2017年12月14日
Gartner:2018人工智能预测
走向智能论坛
4+阅读 · 2017年11月28日
相关论文
Arxiv
101+阅读 · 2020年3月4日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
22+阅读 · 2019年11月24日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
18+阅读 · 2019年1月16日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Large-Scale Study of Curiosity-Driven Learning
Arxiv
8+阅读 · 2018年8月13日
Arxiv
7+阅读 · 2018年1月24日
Top
微信扫码咨询专知VIP会员