现在是AI“大行其道”的时代,不少专业人士都认为AI将会是第四次工业革命的驱动力。在诸多通往AI的道路中,深度学习可谓是最热门、最有效的之一,而深度学习的基础正是神经网络。
为此,CSDN学院邀请到《Python与机器学习实战》作者何宇健,他将为大家直播分享的主题为「神经网络的原理及结构设计」。
本课程全面覆盖神经网络相关知识点,并分享知识点之间的联系,有助于巩固机器学习体系。不仅介绍理论知识,且详述相应代码实现的思路和细节。
11月7日晚20:00-21:00
CSDN学院
本课程会先从神经网络的原型谈起,然后会通过与传统机器学习算法(朴素贝叶斯、决策树等)进行比较来直观说明为何它如此有效,最后会通过介绍一些对原型的改进与创新来说明为何神经网络能在广大领域发挥作用。
何宇健,《Python与机器学习实战》作者,来自北京大学数学系,有多年Python开发经验,在GitHub上拥有并维护着一个纯Python编写的机器学习算法库(180个stars,100个forks)。对机器学习、神经网络、贝叶斯算法有深入研究。曾在创新工场AI工程院负责研发适用于结构化数据的新型神经网络。
没有相应背景并对深度学习感兴趣、或有一定机器学习背景并想拓宽思维的,渴望为转型AI打好基础的程序员。
1. 神经网络的基本知识;
2. 神经网络与传统机器学习算法的对比;
3. 神经网络的改进与创新。
扫描下方二维码立即报名 ↓