能听懂口音的开源语音系统来了:OpenAI出品,支持99种语言,英文识别能力直逼人类

2022 年 9 月 24 日 量子位
羿阁 发自 凹非寺
量子位 | 公众号 QbitAI

逼近人类水平的语音识别系统来了?

没错,OpenAI新开源了一个名为「Whisper」的新语音识别系统,据称在英文语音识别方面拥有接近人类水平的鲁棒性和准确性!

不仅如此,对于不同口音专业术语的识别效果也是杠杠的!

一经发布就在推特上收获4800+点赞1000+转发

网友们纷纷对它意料之外的强大功能表示惊讶。

不仅是英文,有人用法国诗人波德莱尔的《恶之花》进行了语音测试,得到的文本几乎与原文一致

OpenAI联合创始人&首席科学家Ilya Sutskever就表示:

终于有一个靠谱的语音识别系统能听懂我的口音了。

前任特斯拉人工智能总监Andrej Karpathy甚至转发评论:OpenAI正处于最好的状态中。

话不多说,让我们看看这个被“好评如潮”的语音系统究竟是怎么回事。

逼近人类水平的语音识别系统

首先,Whisper最大特点是它使用的超大规模训练集

它使用从网络上收集的68万小时的多语言、多任务监督数据进行训练。

这导致数据集的内容非常多元化,涵盖了许多不同环境、不同录音设备下、不同语言的音频。

具体而言,65%(438218小时)是英语音频和匹配的英语文本,大约18%(125739小时)是非英语音频和英语文本,而最后17%(117113小时)则是非英语音频和相应的文本。

其中,非英语部分共包含98种不同语言。

不过,虽然音频质量的多样性可以帮助提高训练模型的鲁棒性,但转录文本质量的多样性并不是同样有益的。

初步检查显示,原始数据集中有大量不合格的、现有自动语音识别(ASR)系统生成的转录文本。

而以往的研究表明,在人工和机器混合生成的数据集上进行训练,会显著损害翻译系统的性能。

为了解决这个问题,研究团队开发了几种自动过滤方法来识别和删除低质量的数据源。

但值得一提的是,没有说话内容的片段会被留下,作为语音活动检测的训练数据。

其次,Whisper体系结构是一种简单的端到端方法,具体来说就是Transformer的编码器-解码器格式。

输入音频被分成30秒的片段,再转换成log-Mel谱图,然后传入编码器。

解码器被训练来预测相应的文本标题,并混合特殊标记,指示单一模型执行诸如语言识别、多语言语音转录和英语语音翻译等任务。

除此之外,研究人员还为Whisper设置了5种不同的型号,以下是各模型大致的内存需求和相对速度,使用者可以自行选择。

但需要注意的是,只有“large”型号支持多语言,前4个模型都只支持英语。

不过不需要担心,与其他模型相比,英文语音识别正是Whisper的核心竞争力。

实验结果证明,Whisper在Librispeech test-clean测试的错误率达到2.7%。

虽然这一数值与Wav2vec 2.0一样,但在零样本性能上,Whisper明显更稳健,平均误差减少了55%

甚至零样本Whisper模型还缩小了与人类鲁棒性之间的差距

可以看出,与人类Alec相比,LibriSpeech模型的错误率大约是人类的两倍,而Whisper模型的鲁棒性边界则包括Alec95%的置信区间。

研究团队

Whisper的研究团队来自OpenAI,共同一作有两位:Alec Radford、Jong Wook Kim。

Alec Radford,OpenAI的机器学习研究员,也是indico.io的联合创始人。

Jong Wook Kim,在纽约大学获得了音乐技术专业的博士学位,研究方向包括多模态深度学习和音乐理解,目前是OpenAI的研究人员。

值得一提的是,研究团队指出,虽然目前Whisper还没有实时功能,但它的运行速度和内存大小表明,在这一基础上搭建实时语音识别和翻译功能是可行的。

他们希望Whisper的高精度和易用性,将允许开发人员将语音接口添加到更广泛的应用程序中。

论文和GitHub链接附在文末,感兴趣的小伙伴们可以自取~

论文链接:
https://cdn.openai.com/papers/whisper.pdf

GitHub链接:
https://github.com/openai/whisper#approach

参考链接:
[1]
https://colab.research.google.com/github/openai/whisper/blob/master/notebooks/LibriSpeech.ipynb
[2]https://techcrunch.com/2022/09/21/openai-open-sources-whisper-a-multilingual-speech-recognition-system/?guccounter
[3]https://news.ycombinator.com/item?id=32927360
[4]https://twitter.com/alecrad
[5]https://jongwook.kim/

「2022人工智能年度评选」火热报名中

现在,量子位「2022人工智能年度评选」已经正式启幕,评选将从企业、人物、产品/解决方案三大维度设置5类奖项。

更多关于评选标准、榜单报名欢迎扫描下方二维码~


点这里关注我 👇 记得标星噢 ~


一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~  



登录查看更多
2

相关内容

语音系统的应用可以分为两个发展方向:一个方向是大词汇量连续语音识别系统,主要应用于计算机的听写机,以及与电话网或者互联网相结合的语音信息查询服务系统,这些系统都是在计算机平台上实现的。 另外一个重要的发展方向是小型化、便携式语音产品的应用,如无线手机上的拨号、汽车设备的语音控制、智能玩具、家电遥控等方面的应用,这些应用系统大都使用专门的第三方软件来实现,特别是近几年来迅速发展的语音信号处理专用芯片(Application Specific Integrated Circuit,ASIC)和语音识别片上系统(System on Chip,SOC)的出现。
【COMPTEXT2022教程】跨语言监督文本分类,41页ppt
专知会员服务
18+阅读 · 2022年6月14日
中科院自动化所徐波团队最新《视觉-语言预训练》综述
专知会员服务
67+阅读 · 2022年2月23日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月27日
Arxiv
0+阅读 · 2022年11月22日
Arxiv
14+阅读 · 2021年6月30日
已删除
Arxiv
32+阅读 · 2020年3月23日
VIP会员
相关VIP内容
【COMPTEXT2022教程】跨语言监督文本分类,41页ppt
专知会员服务
18+阅读 · 2022年6月14日
中科院自动化所徐波团队最新《视觉-语言预训练》综述
专知会员服务
67+阅读 · 2022年2月23日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年11月27日
Arxiv
0+阅读 · 2022年11月22日
Arxiv
14+阅读 · 2021年6月30日
已删除
Arxiv
32+阅读 · 2020年3月23日
Top
微信扫码咨询专知VIP会员