【新加坡国立大学张戎】深度学习与强化学习(附slide下载)

2017 年 12 月 5 日 专知 张戎

点击上方“专知”关注获取专业AI知识!

来源:

https://cloud.tencent.com/developer/article/1006637

随着 DeepMind 公司的崛起,深度学习和强化学习已经成为了人工智能领域的热门研究方向。除了众所周知的 AlphaGo 之外,DeepMind 之前已经使用深度学习与强化学习的算法构造了能够自动玩 Atari 游戏的 AI,并且在即时战略游戏 StarCraft II 的游戏 AI 构建上做出了自己的贡献。虽然目前还没有成功地使用 AI 来战胜 StarCraft II 的顶尖职业玩家,但是 AI 却能够带给大家无穷的想象力和期待。

本篇 PPT 将会从强化学习的一些简单概念开始,逐步介绍值函数与动作值函数,以及 Q-Learning 算法。然后介绍深度学习中卷积神经网络的大致结构框架。最后将会介绍卷积神经网络是如何和强化学习有效地结合在一起,来实现一些简单的游戏 AI。

之前也写过一份PPT《当强化学习遇见泛函分析》,两份 PPT 有一些重复的地方,读者选择一些看即可。之前文章从强化学习的定义出发,一步一步地给读者介绍强化学习的简单概念和基本性质,并且会介绍经典的 Q-Learning 算法。文章的最后一节会介绍泛函分析的一些基本概念,并且使用泛函分析的经典定理 Banach Fixed Point Theorem 来证明强化学习中 Value Iteration 等算法的收敛性。

末尾附slide下载。






特别提示-深度学习与强化学习slide下载

请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知),

  • 后台回复“TDLRL” 就可以获取报告pdf下载链接~




-END-

专 · 知

人工智能领域主题知识资料查看获取【专知荟萃】人工智能领域25个主题知识资料全集(入门/进阶/论文/综述/视频/专家等)

同时欢迎各位用户进行专知投稿,详情请点击

诚邀】专知诚挚邀请各位专业者加入AI创作者计划了解使用专知!

请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料

请扫一扫如下二维码关注我们的公众号,获取人工智能的专业知识!

请下方扫一扫专知小助手微信(Rancho_Fang),加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~


点击“阅读原文”,使用专知

登录查看更多
2

相关内容

强化学习(RL)是机器学习的一个领域,与软件代理应如何在环境中采取行动以最大化累积奖励的概念有关。除了监督学习和非监督学习外,强化学习是三种基本的机器学习范式之一。 强化学习与监督学习的不同之处在于,不需要呈现带标签的输入/输出对,也不需要显式纠正次优动作。相反,重点是在探索(未知领域)和利用(当前知识)之间找到平衡。 该环境通常以马尔可夫决策过程(MDP)的形式陈述,因为针对这种情况的许多强化学习算法都使用动态编程技术。经典动态规划方法和强化学习算法之间的主要区别在于,后者不假设MDP的确切数学模型,并且针对无法采用精确方法的大型MDP。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【圣经书】《强化学习导论(2nd)》电子书与代码,548页pdf
专知会员服务
202+阅读 · 2020年5月22日
专知会员服务
103+阅读 · 2020年3月12日
强化学习和最优控制的《十个关键点》81页PPT汇总
专知会员服务
103+阅读 · 2020年3月2日
【综述】自动驾驶领域中的强化学习,附18页论文下载
专知会员服务
172+阅读 · 2020年2月8日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
208+阅读 · 2020年1月13日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
专知会员服务
208+阅读 · 2019年8月30日
【资源】强化学习实践教程
专知
43+阅读 · 2019年9月11日
深度强化学习简介
专知
30+阅读 · 2018年12月3日
基于深度学习的文本生成【附217页PPT下载】
专知
35+阅读 · 2018年11月24日
深度学习之路——论文阅读
专知
11+阅读 · 2018年9月29日
机器学习数学基础【附PPT下载】
专知
46+阅读 · 2018年9月17日
【下载】TensorFlow机器学习教程手把手书谱
专知
38+阅读 · 2017年12月22日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
5+阅读 · 2018年6月5日
Arxiv
4+阅读 · 2018年5月4日
Arxiv
11+阅读 · 2018年4月25日
Arxiv
6+阅读 · 2018年1月11日
VIP会员
相关VIP内容
【圣经书】《强化学习导论(2nd)》电子书与代码,548页pdf
专知会员服务
202+阅读 · 2020年5月22日
专知会员服务
103+阅读 · 2020年3月12日
强化学习和最优控制的《十个关键点》81页PPT汇总
专知会员服务
103+阅读 · 2020年3月2日
【综述】自动驾驶领域中的强化学习,附18页论文下载
专知会员服务
172+阅读 · 2020年2月8日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
208+阅读 · 2020年1月13日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
专知会员服务
208+阅读 · 2019年8月30日
相关资讯
【资源】强化学习实践教程
专知
43+阅读 · 2019年9月11日
深度强化学习简介
专知
30+阅读 · 2018年12月3日
基于深度学习的文本生成【附217页PPT下载】
专知
35+阅读 · 2018年11月24日
深度学习之路——论文阅读
专知
11+阅读 · 2018年9月29日
机器学习数学基础【附PPT下载】
专知
46+阅读 · 2018年9月17日
【下载】TensorFlow机器学习教程手把手书谱
专知
38+阅读 · 2017年12月22日
Top
微信扫码咨询专知VIP会员