唯一《可解释机器学习》中文书!复旦研究生翻译,原作者点赞!

2020 年 5 月 14 日 计算机视觉life

点击上方“计算机视觉life”,选择“星标”

快速获得最新干货

本文来自量子位

新冠疫情的出现,让许多AI医疗技术浮出水面。

但是AI一直黑箱问题存在,如果AI对过程都不能做到可解释,又怎么能放心让它来诊断病患呢。而关于机器学习可解释问题的书籍少之又少。

最近,一位来自复旦大学的研究生朱明超,将一本少有的书《Interpretable Machine Learning》(可解释机器学习)翻译成了中文。

这本书最初是由德国慕尼黑大学博士Christoph Molnar耗时两年完成的,长达250页,是仅有的一本系统介绍可解释性机器学习的书籍。

朱明超近期完成了这本书的翻译和校对工作,目前已经开源放到GitHub网页上。朱同学在翻译过程中还和原作者进行了多次讨论,中文版还得到了Christoph Molnar本人在Twiter上的推荐。

“可解释”是这本书的核心论题。作者认为,可解释性在机器学习甚至日常生活中都是相当重要的一个问题。建议机器学习从业者、数据科学家、统计学家和任何对使机器学习模型可解释的人阅读本书。

《可解释的机器学习》该书总共包含 7 章内容:

第一章:前言
第二章:可解释性
第三章:数据集
第四章:可解释的模型
第五章:模型无关方法
第六章:基于样本的解释
第七章:水晶球

Molnar表示,虽然数据集与黑盒机器学习解决了很多问题,但这不是最好的使用姿势,现在模型本身代替了数据成为了信息的来源,但可解释性可以提取模型捕捉到的额外信息。

当我们的日常生活中全都是机器和算法时,也需要可解释性来增加社会的接受度。毕竟要是连科学家都研究不透“黑盒”,怎样让普通人完全信任模型做出的决策呢?

这本书的重点是机器学习的可解释性。你可以从这本书中学习简单的、可解释的模型,如线性回归、决策树和决策规则等。

后面几章重点介绍了解释黑盒模型的模型无关的一般方法,如特征重要性和累积局部效应,以及用 Shapley 值和 LIME 解释单个实例预测。

对各种解释方法进行了深入的解释和批判性的讨论。它们是如何工作的?优点和缺点是什么?如何解释它们的输出?本书使你能够选择并正确应用最适合你的机器学习项目的解释方法。

这本书结合了各类现实生活中的例子来介绍相关的概念,同时搭配参考链接帮助读者进一步学习了解。

另外朱同学的GitHub上还一直在坚持翻译Goodfellow的《机器学习》,还在翻译中配上了自己编写的Python代码供参考。有兴趣的同学也可以顺带去参考学习。

最后附上《可解释机器学习》一书的项目地址(含PDF书籍):
https://github.com/MingchaoZhu/InterpretableMLBook

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


投稿、合作也欢迎联系:simiter@126.com

长按关注计算机视觉life


给优秀的自己点个赞  

登录查看更多
9

相关内容

可解释性是指一个人能够持续预测模型结果的程度。机器学习模型的可解释性越高,人们就越容易理解为什么做出某些决定或预测。
【纽约大学】最新《离散数学》笔记,451页pdf
专知会员服务
129+阅读 · 2020年5月26日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
204+阅读 · 2020年2月24日
【经典书】精通机器学习特征工程,中文版,178页pdf
专知会员服务
357+阅读 · 2020年2月15日
【新书】傻瓜式入门深度学习,371页pdf
专知会员服务
189+阅读 · 2019年12月28日
谷歌机器学习速成课程中文版pdf
专知会员服务
146+阅读 · 2019年12月4日
神经网络与深度学习,复旦大学邱锡鹏老师
专知会员服务
119+阅读 · 2019年9月24日
8月最新-《可解释机器学习-Christoph Molnar》-新书分享
深度学习与NLP
10+阅读 · 2019年8月12日
干货 | 可解释的机器学习
AI科技评论
20+阅读 · 2019年7月3日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
4+阅读 · 2018年4月10日
Arxiv
22+阅读 · 2018年2月14日
Arxiv
3+阅读 · 2017年7月6日
VIP会员
相关VIP内容
【纽约大学】最新《离散数学》笔记,451页pdf
专知会员服务
129+阅读 · 2020年5月26日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
204+阅读 · 2020年2月24日
【经典书】精通机器学习特征工程,中文版,178页pdf
专知会员服务
357+阅读 · 2020年2月15日
【新书】傻瓜式入门深度学习,371页pdf
专知会员服务
189+阅读 · 2019年12月28日
谷歌机器学习速成课程中文版pdf
专知会员服务
146+阅读 · 2019年12月4日
神经网络与深度学习,复旦大学邱锡鹏老师
专知会员服务
119+阅读 · 2019年9月24日
Top
微信扫码咨询专知VIP会员