在本研究中,我们提出了一种基于最短路径建模的新型去噪扩散模型,该模型通过优化残差传播(residual propagation),以提高去噪效率和生成质量。受到去噪扩散隐式模型(DDIM, Denoising Diffusion Implicit Models)及图论(graph theory)启发,我们提出的模型Shortest Path Diffusion Model(ShortDF),将去噪过程视为一个最短路径问题,旨在最小化重建误差(reconstruction error)。 通过优化初始残差(initial residuals),ShortDF能够提高反向扩散过程(reverse diffusion process)的效率,并提升生成样本的质量。我们在多个标准基准数据集上进行了广泛实验,结果表明,与现有方法相比,ShortDF能够显著减少扩散时间(或步数),同时提升生成样本的视觉保真度(visual fidelity)。我们认为,该研究为**交互式扩散模型应用(interactive diffusion-based applications)奠定了基础,并为快速数据生成(rapid data generation)**提供了新思路。 **代码开源地址:**https://github.com/UnicomAI/ShortDF