在本报告中,我们记录了机器学习(ML)回归在周期性、高度振荡和𝐶∞函数上的可扩展性和灵敏度。这项工作的动机是需要在潮汐传播等周期性问题上使用 ML 回归。在这项工作中,TensorFlow 被用来研究周期函数从一维到三维的机器可扩展性。针对一系列层、神经元和学习率,计算了每个维度的挂钟时间,以进一步研究 ML 回归对这些参数的敏感性。最后,比较了随机梯度下降和 Adam 优化器的挂钟时间和敏感性。

成为VIP会员查看完整内容
26

相关内容

人工智能在军事中可用于多项任务,例如目标识别、大数据处理、作战系统、网络安全、后勤运输、战争医疗、威胁和安全监测以及战斗模拟和训练。
《利用深度学习进行目标姿态估计》2023最新63页论文
专知会员服务
46+阅读 · 2023年8月29日
《贝叶斯神经网络的联邦学习》2023最新73页论文
专知会员服务
61+阅读 · 2023年5月7日
【伯克利博士论文】数据与标签高效表示学习,114页pdf
专知会员服务
52+阅读 · 2023年2月20日
【2022新书】深度学习归一化技术,117页pdf
专知会员服务
97+阅读 · 2022年11月25日
【2022新书】深度学习归一化技术,117页pdf
专知
24+阅读 · 2022年11月25日
斯坦福CS236-深度生成模型2019-全套课程资料分享
深度学习与NLP
20+阅读 · 2019年8月20日
国家自然科学基金
7+阅读 · 2017年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
21+阅读 · 2009年12月31日
Arxiv
162+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
423+阅读 · 2023年3月31日
Arxiv
69+阅读 · 2023年3月26日
VIP会员
相关VIP内容
《利用深度学习进行目标姿态估计》2023最新63页论文
专知会员服务
46+阅读 · 2023年8月29日
《贝叶斯神经网络的联邦学习》2023最新73页论文
专知会员服务
61+阅读 · 2023年5月7日
【伯克利博士论文】数据与标签高效表示学习,114页pdf
专知会员服务
52+阅读 · 2023年2月20日
【2022新书】深度学习归一化技术,117页pdf
专知会员服务
97+阅读 · 2022年11月25日
相关基金
国家自然科学基金
7+阅读 · 2017年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
21+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员