在大数据时代,人工智能得到了蓬勃发展,尤其以机器学习、深度学习为代表的技术更是取得了突破性进展.随着人工智能在实际场景中的广泛应用,人工智能的安全和隐私问题也逐渐暴露出来,并吸引了学术界和工业界的广泛关注.以机器学习为代表,许多学者从攻击和防御的角度对模型的安全进行了深入的研究,并且提出了一系列的方法.然而,当前对机器学习安全的研究缺少完整的理论架构和系统架构.从训练数据逆向还原、模型结构反向推演、模型缺陷分析等角度进行总结及分析,建立反向智能的抽象定义及其分类体系.同时,在反向智能的基础上,将机器学习安全作为应用对其进行简要归纳.最后探讨了反向智能研究当前面临的挑战以及未来的研究方向.建立反向智能的理论体系,对于促进人工智能健康发展极具理论意义. http://www.jos.org.cn/jos/article/abstract/6699