贝叶斯优化帮助您快速准确地找到最佳的机器学习模型配置。通过这本实用指南,将其先进技术付诸实践。 在《贝叶斯优化实战》中,您将学习如何:
适用于读者: 适合对数学和统计学有信心的机器学习从业者。关于作者: Quan Nguyen是圣路易斯华盛顿大学的研究助理。他为Python软件基金会撰写文章,并撰写了多本关于Python编程的书籍。目录: 1 贝叶斯优化简介 第一部分 使用高斯过程建模 2 将高斯过程视为函数分布 3 使用均值和协方差函数自定义高斯过程 第二部分 使用贝叶斯优化做决策 4 使用改进基策略细化最佳结果 5 使用土匪风格策略探索搜索空间 6 使用信息理论的熵基策略 第三部分 将贝叶斯优化扩展到特定设置 7 使用批量优化最大化吞吐量 8 使用约束优化满足额外约束 9 使用多保真优化平衡效用和成本 10 使用偏好优化从成对比较中学习 11 同时优化多个目标 第四部分 特殊的高斯过程模型 12 将高斯过程扩展到大型数据集 13 将高斯过程与神经网络结合封底简介: 《贝叶斯优化实战》教您如何从头开始构建贝叶斯优化系统。这本书将最先进的研究转化为您可以轻松实践的可用技术——所有这些都配有有用的代码样本。 您将通过吸引人的示例来提高对贝叶斯优化的理解——从预测天气到找到咖啡的最佳糖量,甚至决定某人是否有心灵感应!在此过程中,您将探索具有多个目标的情景,每个决策都有自己的成本,以及当反馈以成对比较的形式出现时。有了这些技术的集合,您将准备好为一切找到最佳解决方案——从运输和物流到癌症治疗。适用于读者: 适合对数学和统计学有信心的机器学习从业者。关于作者: Quan Nguyen是Python程序员和机器学习爱好者。他对涉及不确定性的决策问题感兴趣。Quan已经撰写了多本关于Python编程和科学计算的书籍。他目前正在圣路易斯华盛顿大学攻读计算机科学博士学位,他在那里研究机器学习中的贝叶斯方法。亚马逊页面"