《The Hundred-Page Machine Learning Book》,中文翻译为为《百页机器学习书》。这本书是Andriy Burkov所著,其是Gartner的机器学习团队负责人。这本书短小精悍,只有一百页左右,包含大量自 20 世纪 60 年代以来具有重要实用价值的机器学习材料。它既适用于初学者,也适用于有经验的从业者。
让我们从实话实说开始:机器其实不会学习。典型的“Learning Machine”所做的是找到一个数学公式,当它应用于一组输入(称为“训练数据”)时,就会产生所需的输出。这个数学公式还可以为大多数其他输入(与训练数据不同)生成正确的输出,条件是这些输入来自与训练数据相同或类似的统计分布。
为什么这不是学习?因为如果你稍微改变或扭曲一下输入,输出就很可能完全错误。但动物的学习不是这样的。如果你学会了通过直视屏幕来玩电子游戏,那么如果有人稍微转动一下屏幕,你仍然可以玩得很好。机器学习算法,如果它是通过“直视”屏幕来训练的,除非它也经过了识别旋转的训练,否则它将无法在旋转的屏幕上玩游戏。
那么为什么叫“机器学习”呢?原因是由于市场营销:美国电脑游戏和人工智能领域的先驱阿瑟•塞缪尔(Arthur Samuel) 于1959年在IBM工作时创造了这个词。与IBM在2010年试图推销“认知计算(cognitive computing)”一词在竞争中脱颖而出的情况类似,在上世纪60年代,IBM使用了新的“机器学习(machine learning)”一词来吸引客户和有才华的员工。
正如你所看到的,就像人工智能不是智能一样,机器学习也不是学习。然而,机器学习是一个被普遍认可的术语,通常指的是制造机器的科学和工程,这些机器能够在没有明确编程的情况下完成各种有用的事情。因此,这个术语中的“学习”这个词是用来类比动物的学习,而不是字面上的学习。