Explorations in fine-tuning Vision-Language Models (VLMs), such as Low-Rank Adaptation (LoRA) from Parameter Efficient Fine-Tuning (PEFT), have made impressive progress. However, most approaches rely on explicit weight updates, overlooking the extensive representational structures already encoded in pre-trained models that remain underutilized. Recent works have demonstrated that Mask Fine-Tuning (MFT) can be a powerful and efficient post-training paradigm for language models. Instead of updating weights, MFT assigns learnable gating scores to each weight, allowing the model to reorganize its internal subnetworks for downstream task adaptation. In this paper, we rethink fine-tuning for VLMs from a structural reparameterization perspective grounded in MFT. We apply MFT to the language and projector components of VLMs with different language backbones and compare against strong PEFT baselines. Experiments show that MFT consistently surpasses LoRA variants and even full fine-tuning, achieving high performance without altering the frozen backbone. Our findings reveal that effective adaptation can emerge not only from updating weights but also from reestablishing connections among the model's existing knowledge. Code available at: https://github.com/Ming-K9/MFT-VLM


翻译:视觉语言模型(VLM)的微调探索,例如参数高效微调(PEFT)中的低秩适应(LoRA),已取得显著进展。然而,大多数方法依赖于显式的权重更新,忽略了预训练模型中已编码但未被充分利用的广泛表征结构。近期研究表明,掩码微调(MFT)可以成为语言模型一种强大且高效的训练后范式。MFT不更新权重,而是为每个权重分配可学习的门控分数,使模型能够重组其内部子网络以适应下游任务。本文基于MFT的结构重参数化视角,重新思考VLM的微调。我们将MFT应用于具有不同语言骨干的VLM的语言和投影器组件,并与强大的PEFT基线进行比较。实验表明,MFT始终优于LoRA变体甚至全量微调,在不改变冻结骨干的情况下实现了高性能。我们的发现表明,有效的适应不仅可以通过更新权重实现,还可以通过重新建立模型现有知识间的连接而涌现。代码发布于:https://github.com/Ming-K9/MFT-VLM

0
下载
关闭预览

相关内容

【ACMMM2025】EvoVLMA: 进化式视觉-语言模型自适应
专知会员服务
15+阅读 · 2025年8月5日
【KDD2024】面向鲁棒推荐的决策边界感知图对比学习
专知会员服务
21+阅读 · 2024年8月8日
【KDD2024】HiGPT:异构图语言模型
专知会员服务
19+阅读 · 2024年7月9日
【AAAI2024】LAMM: 多模态提示学习的标签对齐
专知会员服务
41+阅读 · 2023年12月14日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
VIP会员
相关VIP内容
【ACMMM2025】EvoVLMA: 进化式视觉-语言模型自适应
专知会员服务
15+阅读 · 2025年8月5日
【KDD2024】面向鲁棒推荐的决策边界感知图对比学习
专知会员服务
21+阅读 · 2024年8月8日
【KDD2024】HiGPT:异构图语言模型
专知会员服务
19+阅读 · 2024年7月9日
【AAAI2024】LAMM: 多模态提示学习的标签对齐
专知会员服务
41+阅读 · 2023年12月14日
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员