We present CoMet, a novel approach for computing a group's cohesion and using that to improve a robot's navigation in crowded scenes. Our approach uses a novel cohesion-metric that builds on prior work in social psychology. We compute this metric by utilizing various visual features of pedestrians from an RGB-D camera on-board a robot. Specifically, we detect characteristics corresponding to proximity between people, their relative walking speeds, the group size, and interactions between group members. We use our cohesion-metric to design and improve a navigation scheme that accounts for different levels of group cohesion while a robot moves through a crowd. We evaluate the precision and recall of our cohesion-metric based on perceptual evaluations. We highlight the performance of our social navigation algorithm on a Turtlebot robot and demonstrate its benefits in terms of multiple metrics: freezing rate (57% decrease), deviation (35.7% decrease), and path length of the trajectory(23.2% decrease).
翻译:我们展示了CoMet, 这是用来计算一个团体凝聚力的新办法, 并用它来改进一个机器人在拥挤的场景中的导航。 我们的方法使用了一种基于社会心理学先前工作的新颖的凝聚力度量。 我们利用机器人上方的 RGB-D 相机对行人的各种视觉特征进行计算。 具体地说, 我们检测到人与人之间的相近性、 相对行走速度、 群体大小以及群体成员之间的相互作用。 我们用我们的凝聚力度量来设计和改进一个导航系统,在机器人通过人群移动时计算出不同程度的群体凝聚力。 我们根据感知性评估评估了我们的凝聚力度度度度度的精确度并回忆了我们的凝聚力度度量。 我们突出了我们社会导航算法在海龟机器人上的性能,并展示了它从多重度量上的好处: 冻结率( 57% 下降 ) 、 偏差 ( 35.7%) 和 轨道路径长度( 下降 23.2%) 。