Vehicle Routing Problems (VRPs) with diverse real-world attributes have driven recent interest in cross-problem learning approaches that efficiently generalize across problem variants. We propose ARC (Attribute Representation via Compositional Learning), a cross-problem learning framework that learns disentangled attribute representations by decomposing them into two complementary components: an Intrinsic Attribute Embedding (IAE) for invariant attribute semantics and a Contextual Interaction Embedding (CIE) for attribute-combination effects. This disentanglement is achieved by enforcing analogical consistency in the embedding space to ensure the semantic transformation of adding an attribute (e.g., a length constraint) remains invariant across different problem contexts. This enables our model to reuse invariant semantics across trained variants and construct representations for unseen combinations. ARC achieves state-of-the-art performance across in-distribution, zero-shot generalization, few-shot adaptation, and real-world benchmarks.
翻译:具有多样化现实世界属性的车辆路径问题(VRPs)推动了近期对跨问题学习方法的研究,这些方法能够高效泛化至不同问题变体。我们提出ARC(基于组合学习的属性表示),这是一种跨问题学习框架,通过将解耦的属性表示分解为两个互补组件来学习解耦属性表示:用于不变属性语义的内在属性嵌入(IAE),以及用于属性组合效应的上下文交互嵌入(CIE)。这种解耦是通过在嵌入空间中强制类比一致性实现的,以确保添加属性(例如长度约束)的语义变换在不同问题上下文中保持恒定。这使得我们的模型能够在已训练变体间复用不变语义,并为未见过的组合构建表示。ARC在分布内测试、零样本泛化、少样本适应及现实世界基准测试中均取得了最先进的性能。