Technical debt (TD) refers to delayed tasks and immature artifacts that may bring short-term benefits but incur extra costs of change during maintenance and evolution in the long term. TD has been extensively studied in the past decade, and numerous open source software (OSS) projects were used to explore specific aspects of TD and validate various approaches for TD management (TDM). However, there still lacks a comprehensive understanding on the practice of TDM in OSS development, which penetrates the OSS community's perception of the TD concept and how TD is managed in OSS development. To this end, we conducted an empirical study on the whole GitHub to explore the adoption and execution of TDM based on issues in OSS projects. We collected 35,278 issues labeled as TD (TD issues) distributed over 3,598 repositories in total from the issue tracking system of GitHub between 2009 and 2020. The findings are that: (1) the OSS community is embracing the TD concept; (2) the analysis of TD instances shows that TD may affect both internal and external quality of software systems; (3) only one TD issue was identified in 31.1% of the repositories and all TD issues were identified by only one developer in 69.0% of the repositories; (4) TDM was ignored in 27.3% of the repositories after TD issues were identified; and (5) among the repositories with TD labels, 32.9% have abandoned TDM while only 8.2% adopt TDM as a consistent practice. These findings provide valuable insights for practitioners in TDM and promising research directions for further investigation.


翻译:技术债务(TD)是指延迟的任务和不成熟的文物,可能会带来短期利益,但在长期维护和演变期间带来额外的变化成本。过去十年,我们广泛研究了TDT, 并使用许多开放源码软件项目来探讨TDT的具体方面,并验证TD管理的各种办法。然而,对于开放源码软件开发过程中的TDM做法仍然缺乏全面了解,这渗透了开放源码软件社区对TDM概念的看法,以及TDD如何在开放源码软件开发过程中得到管理。为此,我们对整个GitHub进行了实证研究,以探讨在开放源码软件项目中的问题基础上采用和执行TDM。我们收集了35,27 27 TDM 数据库中标为TD(TD)问题共分发了3,598个储存库。结果显示:(1) 开放源码软件社区正在接受TDM概念;(2) 对TDD实例的分析表明,TDD可能影响到软件系统的内部和外部质量;(3) 在31.1%的储存库中只发现了一个TDM问题,在TDM 3 数据库中,只有1个连续的TDM 问题被确定为TDM 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员